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Summary

Deep learning models have demonstrated remarkable potential across various domains, including
biology. Despite this, scientists and clinicians face significant challenges when using these tools
in practice. One major concern is that biological systems are inherently complex, raising doubts
about whether even the most advanced models can fully capture their intricacies. Additionally,
the “black box” nature of these million-parameter models poses a barrier to researchers seeking
not only accurate predictions but also mechanistic understanding.

This thesis investigates the practical applications of deep learning models within research
contexts. It specifically focuses on models trained on genomic sequences to predict RNA splicing,
the domain of application for this work. The research addresses two key challenges: variant effect
prediction, which serves as a practical application to assess model performance, and model
interpretability, which aims to advance scientific understanding of the underlying mechanisms
of RNA splicing.

We first addressed the problem of predicting the effects of variants that affect splicing in deep
intronic regions, which are often ignored in genetic tests but now are recognized as important.
Through a comprehensive evaluation of state-of-the-art computational models on curated
datasets of disease-causing deep intronic variants, we revealed the strengths and limitations
of these methods. In particular, we found that pure sequence-based deep learning models, like
SpliceAI and Pangolin, were effective in variant prediction and that models combining SpliceAI
predictions with additional features did not improve performance. Nevertheless, we showed that
regardless of the model, there is still room for improvement, especially for variants disrupting
splicing regulatory elements, which were often misclassified.

For model interpretability, we conducted an in-depth analysis of SpliceAI to uncover
its learned representations of RNA splicing mechanisms. Through large-scale ablation
experiments, we investigated SpliceAI’s ability to study alternative splicing. Our findings
showed that SpliceAI distinguishes between constitutive and alternatively spliced exons and
uses RNA-binding protein motifs as features for its predictions. However, we also highlight
some limitations and cautions for its use in such analyses.
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We further explored model interpretability by developing strategies to study deep learning
models and splicing locally, at the individual exon level. We combined genetic programming
algorithms with domain-aware grammars to produce semantically-rich synthetic datasets,
demonstrating their suitability for local explainable AI in genomics. Additionally, we highlighted
the expressive power of grammars in enabling the design of in silico experiments, using the deep
learning model as an oracle. These concepts were integrated into a software, designed for
splicing-related experiments, assuming the deep learning model accurately reflects the biological
processes involved.

In conclusion, this thesis demonstrated both the potential and current limitations of using
deep learning models as research tools for studying RNA splicing. This work also contributed
open-source software and placed a strong focus on reproducibility, ensuring that this research
can be adopted and extended by the broader scientific community.

Keywords: Deep Learning, RNA Splicing, Variant Effect Prediction, Explainable AI,
Genetic Programming
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Resumo

Os modelos de deep learning têm mostrado um grande potencial em várias áreas, incluindo
a biologia. No entanto, cientistas e clínicos enfrentam vários desafios na aplicação real destes
modelos. Por exemplo, dada a elevada complexidade dos sistemas biológicos, é difícil perceber se
estes modelos prevêm com qualidade todas as suas nuances. Além disso, a falta de transparência
destes modelos, que normalmente são compostos por milhões de parâmetros, carrega desafios
adicionais para os investigadores que procuram compreender os mecanismos subjacentes às suas
previsões.

Esta tese investiga as aplicações práticas de modelos de deep learning no contexto da
investigação científica. Em particular, foca-se em modelos treinados a partir de sequências
genómicas para prever o splicing do RNA, o domínio de aplicação deste trabalho. A investigação
aborda dois desafios principais: a previsão dos efeitos de variantes genéticas, que serve como
uma aplicação prática para avaliar o desempenho dos modelos, e a interpretabilidade, que visa
avançar o conhecimento científico sobre o splicing do RNA.

Em primeiro lugar, abordámos o problema de prever o impacto de variantes que afetam o
splicing e se localizam em regiões intrónicas do genoma, regiões estas frequentemente ignoradas
em testes genéticos mas agora reconhecidas como importantes. Para tal, fizemos uma curação
manual de variantes intrónicas causadoras de doença e usámos estes dados para avaliar dezenas
de modelos computacionais na sua capacidade de previsão, revelando as suas vantagens e
limitações. Em particular, descobrimos que os modelos de deep learning baseados apenas em
sequências, como o SpliceAI e Pangolin, foram eficazes na previsão de variantes. Modelos
que combinam previsões do SpliceAI com atributos (features) adicionais não melhoraram o
desempenho. No entanto, independentemente do modelo, mostrámos que ainda há espaço
para melhorias nesta tarefa, especialmente em variantes que afetam a afinidade da ligação de
elementos reguladores do splicing.

Relativamente à interpretabilidade dos modelos, conduzimos uma análise mais detalhada do
SpliceAI para investigar as representações sobre mecanismos de splicing que o modelo aprendeu.
Para tal, conduzimos estudos de perturbações ao modelo para perceber a capacidade do SpliceAI
de estudar splicing alternativo. Os resultados mostraram que o modelo é capaz de distinguir
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entre exões constitutivos e alternativos e que usa locais de ligação (motivos) de proteínas
reguladoras do splicing como features nas suas previsões. No entanto, revelámos também
algumas limitações do SpliceAI e considerações a ter no seu uso em análises semelhantes.

De seguida, desenvolvemos estratégias para estudar localmente modelos de deep learning que
prevêm splicing, isto é, ao nível do exão individual. Combinámos algoritmos de programação
genética com gramáticas direcionadas ao domínio para gerar dados sintéticos que cobrem o
espaço semântico do modelo, demonstrando o seu potencial para serem usados em Inteligência
Artificial explicável no contexto da genómica. Também destacámos o poder expressivo das
gramáticas no design de experiências in silico, usando o modelo de deep learning como fonte
the conhecimento. Estes conceitos foram integrados num software, com o objetivo de fazer
experiências computacionais relacionadas com o splicing, assumindo que o modelo de deep
learning reflete com precisão os processos biológicos envolvidos.

Esta tese demonstrou o potencial e as limitações atuais do uso de modelos de deep learning
como ferramentas de investigação para o estudo do splicing do RNA. O trabalho resultou em
software de código aberto e prioritizou a reprodutibilidade, permitindo assim à comunidade
científica avançar a investigação na área tendo em conta os conceitos apresentados.

Palavras Chave: Deep Learning, Splicing do RNA, Previsão de Variantes Genéticas, IA
Explicável, Programação Genética.
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Resumo Alargado

Os modelos de deep learning estão a transformar a investigação na área da biologia. Modelos
treinados a partir de sequências genómicas conseguem prever com alta precisão vários
mecanismos moleculares que ocorrem nas células. No entanto, dada a sua complexidade, é um
desafio dissecar o que aprendem e se tal pode ser utilizado para avançar o conhecimento científico
nas ciências da vida. Este trabalho explora a possibilidade de utilizar inteligência artificial como
um recurso para otimizar experiências laboratoriais ou gerar novas hipóteses científicas. Como
domínio de aplicação, a tese foca-se no splicing do RNA, um mecanismo molecular essencial na
regulação da expressão genética.

O splicing é um passo fundamental no processamento do RNA que consiste na remoção de
sequências não codificantes - os intrões - e subsequente ligação das regiões codificantes - os exões
- numa sequência contígua que serve de base para a tradução do RNA mensageiro em proteínas.
O splicing é molecularmente complexo, regulado por centenas de proteínas que coordenam entre
si as diferentes fases do processo, e que está longe de ser totalmente compreendido.

O primeiro objetivo foi compreender como é que estes modelos prevêem o impacto de
variantes genéticas que influenciam o mecanismo do splicing. A relevância desta tarefa é grande,
pois estima-se que até 50% das variantes genéticas causadoras de doença afetam o splicing.
Se os modelos previrem com precisão estas variantes, podem ser usados na prática clínica
para a prioritização de candidatos identificados em testes genéticos, podendo contribuir para
a personalização da terapia oferecida ao paciente.

Para a execução deste objetivo, focámo-nos no levantamento dos modelos existentes
adaptados a essa tarefa, e na curação de dados (variantes) que permitam a sua avaliação
(benchmarking). Quanto à primeira vertente, identificámos diversos modelos passíveis de
avaliação, sendo estes bastante heterogéneos no seu funcionamento e input que recebem. Neste
sentido, implementámos uma ferramenta para processar variantes em formato VCF e criar o
input correto para um conjunto de modelos. Além disso, desenvolvemos um software - VETA -
que automatiza a comparação dos modelos na tarefa de avaliar o efeito de variantes genéticas.

Relativamente à curação de dados, debruçámo-nos em identificar variantes que se localizam
em regiões intrónicas dos genes, pois estas são regiões tradicionalmente ignoradas nos testes
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genéticos, mas que atualmente têm uma importância reconhecida na regulação do splicing. De
forma a adicionar maior novidade ao trabalho, fizemos um esforço para agrupar as variantes
identificadas de acordo com o mecanismo molecular afetado. Por exemplo, uma variante que
cria um splice donor é diferente duma variante que destrói o sinal de branchpoint. Assim sendo,
para além duma avaliação destes modelos de previsão a nível geral, executámos comparações
específicas a cada tipo de variante, a um nível de resolução nunca antes realizado.

Os resultados da avaliação demonstraram que modelos de deep learning treinados apenas
em sequências, como o SpliceAI e Pangolin, foram os mais eficazes na previsão do impacto
de variantes de splicing intrónicas. Observámos ainda que a combinação de previsões do
SpliceAI com atributos (features) adicionais não melhoraram o seu desempenho. No entanto,
independentemente do modelo avaliado, demonstrámos que ainda existe margem para melhoria
nesta tarefa, especialmente em variantes que afetam a afinidade da ligação de elementos
reguladores do splicing. Além disso, revelámos o balanço entre o desempenho dos modelos
e a sua interpretabilidade intrínseca. Modelos treinados com dados tabulares (p.e. SPiP e
SQUIRLS) e com foco em interpretabilidade revelaram um desempenho pior comparativamente
a redes neuronais convolucionais como o SpliceAI e Pangolin.

O segundo grande objetivo deste trabalho foi estudar a interpretabilidade de modelos vistos
como caixas negras, em particular o SpliceAI. A estratégia mais comum para explicar as previsões
destes modelos implica o uso de técnicas que analisam o gradiente do modelo em relação à
sequência de input, atribuindo uma importância a cada nucleótido para explicar a sua previsão.
No entanto, para extrair padrões recorrentes nas sequências e derivar representações de features
mais abrangentes, são necessárias análises adicionais complexas e normalmente distantes de um
investigador especializado no domínio.

Tendo em conta estas limitações, optámos numa primeira instância por realizar estudos de
perturbações ao modelo em larga escala. Estas perturbações foram automatizadas numa pipeline
denominada MutSplice e foram orientadas ao domínio do splicing. Especificamente, perturbámos
sequências que sofrem splicing alternativo após o silenciamento de genes identificados como
reguladores de splicing. Ao perturbar estas sequências nos locais de ligação destes reguladores,
verificámos que o modelo é sensível à sua presença e que a magnitude e direção do efeito das
perturbações replica parcialmente o conhecimento existente acerca da regulação do splicing,
em particular nas famílias de reguladores de splicing SR e hnRNPs. No entanto, avaliámos os
resultados com prudência, referindo as limitações técnicas e conceptuais da análise, em particular
o facto do SpliceAI ser agnóstico ao tipo celular onde a sequência é prevista.

Aprofundando o trabalho neste tópico, focámo-nos no uso destes modelos para estudar o
splicing ao nível individual de cada sequência, com o objetivo de abordar Inteligência Artificial
Explicável a nível local. Em particular, propusemos um novo método para gerar dados sintéticos
- neste caso, sequências - que são semanticamente ricos no espaço de previsão do SpliceAI.
Ou seja, a partir duma sequência genómica real, geramos sequências sintéticas semelhantes
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à original, mas que produzem previsões bastante diferentes. Assumindo que o modelo é
uma fonte fiável de conhecimento sobre o splicing, é possível estudá-lo através das sequências
sintéticas geradas, seja treinando modelos surrogate interpretáveis de raiz, ou analisando os
padrões de features utilizados em diferentes valores da previsão do modelo. A metodologia é
baseada em Programação Genética em que o espaço de procura para gerar as perturbações
nas sequências é limitado por gramáticas ajustadas ao domínio do splicing. Estas gramáticas
codificam perturbações a aplicar à sequência original e condicionam o tipo e a sua localização
de acordo com regras expressivas sobre o mecanismo de splicing. Por exemplo, o processo de
geração não deve incluir perturbações nas zonas de splice sites pois o impacto biológico das
mesmas é grande, causando a destruição destes padrões altamente conservados.

Os nossos resultados demonstraram que Programação Genética é bastante eficaz a gerar
datasets sintéticos relativamente a pesquisas aleatórias, apresentando melhorias de 30% na
qualidade dos mesmos. Além disso, o nosso método é indiferente ao tamanho do espaço
de procura, pois mostrámos que sequências longas, ao nível da resolução do modelo (10.000
nucleótidos), não impactaram a qualidade final dos datasets gerados.

Igualmente importante foi estudar o impacto da gramática usada na qualidade dos dados
que são gerados. Os resultados demonstrados previamente usaram uma gramática que codifica
perturbações aleatórias à sequência original (p.e. uma inserção de 4 nucleótidos, ATTT). No
entanto, desenvolvemos também uma gramática mais próxima do domínio, ao codificar as
perturbações usando padrões já conhecidos onde reguladores do splicing se ligam. Esta gramática
restringe ainda mais o espaço de procura, pois as inserções ou deleções na sequência estão sujeitas
apenas àquilo que já é conhecido biologicamente. Os resultados mostraram que esta gramática
cobre de forma menos eficaz o espaço de previsão do SpliceAI. Isto sugere implicitamente que o
modelo pode ter aprendido representações sobre o splicing que são desconhecidas aos humanos.
Essas representações justificam o melhor desempenho da gramática de perturbações aleatórias,
que é menos restrita pelo conhecimento atual.

Por último, integrámos estes conceitos de gramáticas e geração de sequências num software
com o objetivo de fazer experiências in silico sobre splicing, usando os modelos de deep learning
como fonte de conhecimento para guiar as pesquisas. O software - de seu nome DRESS - é
flexível e permite interrogar os modelos a vários níveis. No entanto, importa sublinhar que o
software é tão útil quanto os modelos sejam capazes de representar biologia real e permitam a
sua decomposição em conceitos compreensíveis ao ser humano.

Em suma, esta tese explorou o uso de modelos estado da arte para a previsão e estudo do
splicing do RNA. Demonstrámos que o potencial destes modelos, conjugado com técnicas de
interpretabilidade ajustadas ao seu domínio de aplicação, pode representar um avanço real na
forma de conduzir investigação biomédica. Porém, ainda está por ser desenvolvido um modelo
eficaz que permita estudar splicing com especificidade ao tipo celular.
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Chapter 1

Introduction

Deep learning models are playing a transformative role in society, enabling breakthroughs
across multiple domains, including finance [1], Natural Language Processing (NLP) [2], or
healthcare [3]. A key attribute of deep learning models is their ability to process raw data
and automatically learn the relevant representations for a given task. For example, in the
medical field, a deep learning model can analyze raw images from an MRI or CT scan to
classify or segment the image into different classes, often surpassing human-level performance [4].
Similarly, in life sciences, deep learning models trained on DNA sequences can effectively predict
molecular properties, such as gene activity levels or the likelihood that a genetic mutation will
cause disease [5, 6]. In addition, these models can be used to advance our scientific understanding
of gene regulation mechanisms, including RNA splicing.

RNA splicing is a process where non-coding regions of genes, called introns, are removed
from a pre-mRNA molecule, and exons are joined to form a mature mRNA molecule that
can be translated into a protein. Splicing is primarily controlled through ill-defined regulatory
signals dispersed across exonic (coding) and intronic (non-coding) sequences and is essential for
cellular function. In addition, it is tightly regulated across different tissues and cell types [7].
Genetic mutations disrupting the splicing mechanism are a primary cause of human diseases [8],
including cancer [9], making the identification of these mutations in clinical practice crucial for
diagnosis and treatment.

Classical Whole Exome Sequencing (WES) and targeted gene panels are widely used genetic
testing strategies in clinical settings. However, these approaches typically target coding regions
and cover less than 2% of the genome, leaving a significant portion, including intronic regions,
unexplored. As a result, more than 50% of patient diagnoses remain unresolved [10, 11].
With the advent of Whole Genome Sequencing (WGS), and the possibility to apply it at
the population scale [12, 13], rare intronic variation can be identified at unprecedented levels.
However, introns in humans are much larger than exons (median length of 1742 base-pairs
(bp) vs. 121bp [14]), with thousands of introns longer than 50Kbp [15]. This size discrepancy
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makes handling candidate variants in intronic regions particularly challenging, as the sheer
amount of detected variants complicates functional interpretation [16], particularly for variants
affecting RNA splicing [17]. Given the importance of intronic regions for splicing regulation, deep
learning models trained on sequences spanning entire genes can be used to predict and prioritize
splicing-related mutations. However, their performance in deep intronic regions has not been
independently and thoroughly evaluated. Unfortunately, assessing their effectiveness requires
high-quality labeled variant datasets, which are historically scarce in these regions. In addition,
there is a lack of a streamlined framework for independent benchmarking that accommodates
the large heterogeneity of the growing number of computational models.

Beyond their predictive capacity, we must consider whether highly performant deep learning
models have learned complex underlying representations about the problem domain. For
example, if a model accurately predicts a disease-causing splicing variant, it may have learned
about the splicing mechanism itself, suggesting that these models can be used to extract
biological insights and drive scientific discovery. However, understanding how these models
arrive at predictions remains challenging due to their complex, highly-parameterized function,
making them difficult to interpret [18]. Despite progress in designing interpretable-by-design
deep nets [19–21], post-hoc interpretation techniques are the most common strategy for studying
model learning (via input perturbations [5, 22] or attribution-based methods [23–25]). While
these methods reveal important patterns within sequences, they do not infer semantic rules of
the regulatory landscape without additional analyses [26, 27]. Moreover, integrated analyses
using deep learning models as “oracles” - in silico ground truth of experimental assays - are
missing in the context of splicing regulation.

An alternative approach is to use inherently interpretable surrogate models to emulate
the black-box model. Although global surrogates have been proposed for explaining complex
models in other domains [28, 29], applying them in genomics remains challenging due to the
intricate combinatorial complexity within regulatory DNA [30]. A more practical strategy is
training surrogate models on smaller data subsets to achieve local explanations [31–34]. Local
surrogates require generating synthetic sequences to augment the datasets locally by employing
perturbations, while avoiding distribution shifts. Ideally, the generated sequences should remain
syntactically similar but semantically diverse, enabling the prediction landscape to be covered
effectively. In the context of genomics, an example of a synthetic sequence complying with
these requirements would be a sequence harboring a single nucleotide change relative to the real
sequence (syntactically similar) that leads to a large change in the model prediction (semantically
different). However, generating such synthetic sequences through random perturbations cannot
guarantee these properties.

Domain-specific properties can further complicate data augmentation. RNA splicing studies
use sequences requiring specific spatial properties, such as exon/intron structure awareness.
Handling these intervals in genomics can be laborious, often requiring error-prone preprocessing
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tasks, such as extracting and tracking splice site locations. Additionally, naive sequence
perturbations may not be meaningful (e.g., disrupting a splice site will likely disrupt splicing,
not revealing any new information). Therefore, user-friendly software that embeds domain
knowledge of splicing for in silico sequence manipulation guided by deep learning oracles is
lacking. Such software would enable cost-effective, domain-oriented in silico experiments to
generate new scientific hypotheses.

1.1 Objectives

Based on the problems outlined above, this thesis addresses the question of whether
sequence-based deep learning models are effective scientific tools for RNA splicing research.
To this end, we propose tackling two central challenges:

• Variant effect prediction. This task refers to measuring the impact of a genetic variant
on a given biological process or function. Accurate variant effect prediction is crucial for
diagnosing genetic disorders, developing targeted therapies, and advancing personalized
medicine. We aim to test these models on a challenging task, focusing on splicing variants
occurring in the often-overlooked intronic regions of the human genome.

• Model interpretability: We aim to investigate whether deep learning models have
learned underlying biological principles and, if so, provide appropriate tools to interrogate
them.

1.2 Methodology and contributions

We now outline the high-level methodology and main contributions of this thesis. Additional
details, including software availability, datasets, and efforts for reproducibility, are provided in
the respective chapters.

1.2.1 Variant effect prediction

For the first challenge, we undertook an extensive effort to comprehensively benchmark
computational models capable of predicting, to some extent, a quantitative measure of the
effect of an intronic genetic variant. This task, in particular, motivated work in the following
areas:

• Data curation. We manually collected from the literature a dataset of experimentally
validated disease-causing deep intronic splicing variants. In addition, when possible, we
collected and standardized the different molecular mechanisms by which these variants
disrupt splicing, allowing for finer-grained benchmarks. These datasets serve as an
independent gold standard for future model testing.
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• Model selection. We cataloged a wide variety of models to be benchmarked, including not
only deep learning models but also classical variant pathogenicity predictors.

• Data preprocessing and engineering. Given that different models target different questions
and require different inputs (e.g., a model that predicts splice sites is different from a
model that directly predicts variant effects), we developed a utility to effectively generate
the proper input for a subset of the models, and process their output into standard Variant
Call Format (VCF) format.

• Model benchmarking. We developed a software called VETA that automates the
benchmarking of Variant Effect Predictors (VEPs). Most benchmarking results presented
in the thesis were obtained using this software.

Accordingly, work related to this challenge gave rise to the following peer-reviewed
publications:

L. Lopes, P. Barbosa, M. Torrado, et al., “Cryptic Splice-Altering Variants in MYBPC3
Are a Prevalent Cause of Hypertrophic Cardiomyopathy”, Circulation: Genomic and
Precision Medicine, 2020 [35].
P. Barbosa, M. Ribeiro, M. Carmo-Fonseca, A. Fonseca, “Clinical significance of genetic
variation in hypertrophic cardiomyopathy: comparison of computational tools to prioritize
missense variants”, Frontiers in Cardiovascular Medicine, 2022 [36].
P. Barbosa, R. Savisaar, M. Carmo-Fonseca, A. Fonseca, “Computational prediction of
human deep intronic variation”, GigaScience, 2023 [37].

1.2.2 Model interpretability

To address model interpretability, we focused on SpliceAI [38], a state-of-the-art widely used
deep learning model that predicts the probability that any given position in the sequence would
be used as a splice site. In particular, we investigated whether SpliceAI has learned meaningful
knowledge about alternative splicing and proposed a novel paradigm to study deep learning
models in genomics, via evolutionary algorithms constrained with grammars. This challenge led
to the following research topics:

• Studying the model via domain-aware ablations. We leveraged publicly available RNA-Seq
data to generate datasets for ablation studies. These studies aimed to understand the
model’s sensitivity to binding motifs of RNA-binding proteins. Along the way, we designed
a pipeline to automate the analyses, focusing on creating outputs prepared for downstream
interpretability queries.

• Synthetic data generation for local Explainable AI (xAI). To address the challenge of
generating synthetic sequences for local surrogate models, we propose a novel approach that
combines genetic algorithms with domain-aware constraints via grammars. We designed
two distinct grammars that encode domain knowledge of splicing, guiding the generation
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of meaningful synthetic sequences more efficiently.
• Streamlining model interrogations. Taking advantage of the grammar guided framework

for synthetic data generation, we developed a software project called DRESS, which enables
flexible in silico splicing interrogations of deep learning models. We demonstrated its
capabilities by interrogating Pangolin, another sequence-based model, on sequences that
are tightly regulated during cardiac development.

The work proposing synthetic data generation resulted in a paper published at GECCO'24,
as well as my involvement in the evaluation of its underlying Genetic Programming framework:

G. Espada, L. Ingelse, P. Canelas, P. Barbosa, A. Fonseca, “Data Types as a More
Ergonomic Frontend for Grammar-Guided Genetic Programming”, GPCE 2022, 2022 [39].
P. Barbosa, R. Savisaar, A. Fonseca, “Semantically Rich Local Dataset Generation for
Explainable AI in Genomics”, GECCO’ 24, 2024 [40].

Other publications not directly associated with the main contributions of this thesis are
listed in Appendix D.

1.3 Structure

Apart from this introductory chapter, the document is organized as follows:
• Chapter 2 (RNA Splicing background) provides a background on RNA splicing, the domain

of application of this thesis.
• Chapter 3 (Deep learning in genomics research) discusses deep learning models and how

to interpret them, particularly in the context of genomics and RNA splicing.
• Chapter 4 (Predicting intronic variants affecting the splicing mechanism) presents an

independent benchmark assessing the capacity of computational approaches to predict
deep intronic variants.

• Chapter 5 (Interpreting SpliceAI) contains an in-depth analysis of SpliceAI, employing
large-scale ablation studies on tailored datasets built for this task.

• Chapter 6 (Semantically-rich synthetic dataset generation with constrained Genetic
Programming) proposes a grammar-guided Genetic Programming approach to generate
semantically rich synthetic local datasets for xAI.

• Chapter 7 (DRESS: a flexible framework for splicing interrogations guided by deep learning
models) presents a toolkit for flexible in silico splicing interrogations using deep learning
models as oracles.

• Chapter 8 (Discussion and conclusion) closes the thesis by providing an overall discussion
and considerations on future research directions.
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Chapter 2

RNA Splicing background

This chapter delves into the domain of RNA splicing, the primary application area of this
thesis. We begin by providing a biological background on the splicing mechanism and its strong
association with disease.

2.1 Mechanisms of RNA Splicing

The genome of a species contains the complete set of instructions for an organism’s development,
starting from the first cell. It is the most fundamental source of information each individual
carries. The human genome, for instance, is approximately 3 billion bp long, with each cell
containing its Deoxyribonucleic acid (DNA) densely packed within the nucleus. Two of the
main cellular building blocks, RNA and protein molecules, are synthesized from DNA through
gene expression, which involves several steps (see Central Dogma of Molecular Biology). One
crucial step in this process is RNA transcription, where the DNA sequence is transcribed into
precursor Ribonucleic acid (RNA), known as pre-messenger RNA (mRNA). This precursor is
then processed to produce mature mRNA. A key stage in this processing is RNA splicing, which
is the focus of this work.

Splicing is an mRNA processing event that takes place in the nucleus of cells. It involves
the removal of introns from the pre-mRNA and is carried out by a complex cellular machinery
known as the spliceosome. This process occurs co-transcriptionally, meaning it takes place
during transcription elongation.

The spliceosome is a large protein-RNA complex consisting of five small nuclear RNAs
(snRNAs) (U1, U2, U4, U5, U6) and approximately 200 proteins [44]. Some of these proteins
associate directly with snRNAs to form small nuclear Ribonucleoproteins (snRNPs), while
others, non-snRNPs, bind directly to the pre-mRNA. The spliceosome is assembled in a stepwise
fashion on every newly synthesized intron, with its components recruited through base-pairing
interactions between the spliceosomal snRNAs and conserved sequences in the pre-mRNA
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Figure 2.1: Elements involved in pre-mRNA splicing of an intron. A - Canonical pre-mRNA elements are
recognized to trigger the assembly of the spliceosome. These elements include the Five-prime Splice Site (5’SS) at
the beginning of the intron, the Three-prime Splice Site (3’SS) at the end, the Branch Point (BP) sequence located
upstream of the 3’SS, and the Polypirimidine (PY) tract between the branch point signal and the 3’SS. Apart
from the highly conserved GU and AG dinucleotides at the first and last two positions of introns, respectively,
splicing signals in the mRNA sequence are degenerate, meaning that various sequences and base-pairing schemes
can assemble the spliceosome. Pre-spliceosome assembly involves the binding of U1 snRNP to the 5’SS and
subsequent recognition of BP, PY, and 3’SS by non-snRNP splicing factors, Splicing Factor 1 (SF1), U2 Auxiliary
Factor 35-kDa subunit (U2AF1), and U2 auxiliary factor 65-kDa subunit (U2AF2). This stage, referred to
as Complex E, is essential for the subsequent recruitment of additional snRNPs and downstream assembly of
a catalytic spliceosome (not shown). B - Two transesterification reactions that biochemically define splicing
(adapted from [41]). In the first reaction, the 2’-hydroxyl group of the BP adenosine attacks the phosphate group
at the 5’SS, generating a free 5’ exon and an intron lariat-3’ exon intermediate. Consequently, the exposed 5’ exon
3’-hydroxyl group attacks the 3’SS, cleaving the lariat-structured intron and ligating the two exons. The exons
are released from the spliceosome, and the intron lariat is eventually degraded. C - Splicing regulatory sequence
elements. These are named based on their location and function: Exonic Splicing Enhancer (ESE), Exonic Splicing
Silencer (ESS), Intronic Splicing Enhancers (ISEs), Intronic Splicing Silencer (ISS). Serine/Arginine (SR) proteins
usually bind to ESEs and promote exon inclusion [42]. Conversely, the classical role of the heterogeneous nuclear
ribonucleoprotein (hnRNP) family is to repress splicing when binding to ESSs, although the picture is less clear
when these proteins bind to intronic elements [43]. In this example, SR proteins are bound to enhancers in the
left and right exons, while an hnRNP binds to the middle, hindering its inclusion in the mature mRNA.

(cis-acting elements, Figure 2.1A). During splicing, two transesterification reactions occur,
excising the intron and ligating the exons (Figure 2.1B). Additionally, recognition of splice
sites by spliceosome components can be enhanced or repressed by additional proteins, named
RNA-binding protein (RBP)s (trans-acting elements), which bind to splicing regulatory elements
in exons and introns (Figure 2.1C) [43]. The combinatorial usage of all these elements ultimately
defines the final structure of the spliced transcript. The next section explores this topic in detail.
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Chapter 2 2.1. Mechanisms of RNA Splicing

Figure 2.2: Mechanisms of alternative splicing (extracted from [45]). Each mechanism generates different
mature RNAs. Exons are represented as boxes, introns as lines. While constitutive exons are displayed in green,
alternatively spliced sequences are presented in blue or brown. When an intron is not spliced out it results in
intron retention, depicted by a black box in the final transcript.

2.1.1 Alternative Splicing

Alternative splicing is a mechanism that allows a single gene to generate multiple distinct
mRNAs, known as splicing isoforms, by assembling different combinations of exonic segments
from the same template DNA. This mechanism expands the proteome diversity encoded by the
genome. There are several types of alternative splicing (Figure 2.2), with exon skipping being
the most common. In exon skipping, a single exon can be included or excluded from the mature
mRNA, resulting in cassette exons. Conversely, exons that are always included are referred to
as constitutive exons. Alternative splicing is regulated in different cellular environments, and
this regulation is tissue-specific. For example, sequences are spliced differently in brain cells
compared to muscle cells. Additionally, regulated shifts in splicing patterns have been shown
to be coordinated during development and cell differentiation, underscoring the critical role of
splicing networks in tissue function and identity [7].

The mechanisms regulating splice-site selection and, consequently, alternative splicing are
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complex and partially remain poorly understood. However, certain key players are known to
be involved in these decisions. RBPs interact with pre-mRNA and modulate how efficiently
the spliceosome components recognize the splice sites. The most studied classes of RBPs are
members of the SR and hnRNP families. SR proteins generally activate splicing, promoting
exon inclusion by binding to Exonic Splicing Enhancers (ESEs) and interacting with snRNPs to
strengthen exon definition. Conversely, members of the hnRNP family typically repress splicing
by binding to silencer sequences (Exonic Splicing Silencers (ESSs), Intronic Splicing Silencers
(ISSs)) and interfering with the core splicing machinery’s ability to engage splice sites [46].
Nevertheless, these roles are not absolute. There is plenty of evidence showing that these proteins
can have opposite functions depending on their binding position and contextual neighborhood
[43, 46, 47].

Many RBPs are ubiquitously expressed across tissues, while only a few regulate specific
tissues [7]. How can such a limited number of regulators control the vast array of alternative
splicing events in human tissues? This diversity is explained by other factors, such as RNA
structure. mRNA structures are critical in determining the accessibility of splice sites and
their regulatory sequences. Several proteins regulate splicing by modulating RNA structures or
binding to structural elements [48], thereby enhancing or repressing splicing.

Additionally, splicing is a highly dynamic process involving numerous kinetic steps. The
timing of the splicing reaction relative to transcription elongation is influenced by several
factors, including gene architecture features such as exon or intron size, transcription rate,
and consecutive splice site competition. These factors define the accessibility of spliceosome
components to core splicing motifs [49]. Specific chromatin modifications [50] and chemical
RNA modifications [51] are also associated with splicing modulation, adding further layers of
regulation to alternative splicing networks.

2.1.2 Splicing and disease

Given splicing complexity, it is not surprising that this RNA processing step is vulnerable to both
hereditary and somatic genetic variants implicated in disease. It is estimated that 10 to 50%
of all monogenic disease-causing variants affect pre-mRNA splicing [38, 52, 53]. Additionally,
cancer driver mutations are often associated with splicing alterations, particularly in variants
that occur in genes encoding core components of the splicing machinery [41].

There have been continuous efforts to systematically catalog disease-causing variation in
databases such as ClinVar [54] or the Human Gene Mutation Database (HGMD) [55]. These
resources show the enrichment of splicing-related variants in the vicinity of splice site regions.
Partly, this reflects a biological reality, where the sequence around the splice sites is particularly
dense in splicing-relevant information. However, this enrichment may also stem from the easier
detection of splice site mutations, as well as biases in clinical guidelines for variant interpretation
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that may contribute to underestimating the significance of deep intronic splicing mutations, as
there is a lack of standardized criteria for their interpretation [56, 57].

Mechanisms

Of the cis variants that affect splicing, those that disrupt splice sites (typically AG for the
3’SS and GT for the 5’SS) or the consensus region around them (nucleotides -12/+2 around
the 3’SS and -3/+6 around the 5’SS) have been studied the most thoroughly. Variants in
these regions, especially if they affect the splice sites themselves, are fairly easy to recognize
because the sequences are short and adhere to a highly conserved motif [8]. In contrast, other
splicing variants can impact the binding of regulatory factors to splicing enhancers or silencers
(ESEs, ISEs, ISSs and ESSs) [46]. Because they are poorly defined sequence motifs which occur
throughout the gene, it is difficult to identify them - and even more difficult to know when a
mutation has disrupted them.

Disruption of splicing information encoded by variants in cis elements can lead to aberrant
splice events such as exon skipping, full intron retention, or exon shortening or lengthening.
Splicing variants can also create entirely new exons, known as pseudoexons. This can occur
when a mutation generates a novel splice site or when an existing but inactive (cryptic) splice
site is activated by the creation of an enhancer motif or the disruption of a silencer motif [58].
Mutations in genes that regulate splicing (trans elements), such as core spliceosome genes and
RBPs, may also contribute to disease phenotypes. These mutations often have larger effect sizes
because they typically regulate the splicing of multiple genes [41].

Deep intronic variants

Given the short DNA/RNA alphabet, numerous cryptic splice sites within extensive intron
regions resemble authentic splice sites. These are usually repressed because their location do
not favor interactions with the splicing machinery, and they are flanked by high densities of
splicing silencer motifs [58]. This repression is crucial for maintaining transcriptome integrity,
ensuring that mRNAs remain in frame to code for functional proteins [46].

Mutations deep within introns can disrupt this balance, activating pseudoexons and
producing aberrant transcripts. This often leads to the introduction of Premature Termination
Codon (PTC) in the mRNA, targeting the transcript for degradation by Nonsense Mediated
Decay (NMD) and resulting in the loss of the protein product (Figure 2.3). Although previously
overlooked, deep intronic mutations are now recognized as a significant cause of human disease
[59, 60].

However, their clinical interpretation remains challenging. Introns are large, making the
search space extensive, and mutations with no effect greatly outnumber rare splice-affecting
variants. As a result, deep intronic variants detected through WGS often end up labeled as
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Figure 2.3: Deep intronic variant triggering pseudo-exon inclusion. A genetic variant (yellow asterisk) creates
a splice donor (5’SS) in the middle of an intron. An upstream cryptic splice acceptor (3’SS) is activated leading
to pseudo-exon inclusion (red sequence stretches in the lower part of the figure), and subsequent degradation by
NMD.

Variant of Uncertain Significance (VUS) [61]. Computational tools can help prioritize variant
candidates, but their efficacy in predicting deep intronic splicing effects remains to be addressed.
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Chapter 3

Deep learning in genomics research

This chapter introduces key concepts essential for understanding the themes of this thesis.
This includes an introduction to deep neural networks, appropriate architectures to model
biological sequences and a discussion of strategies for studying and interpreting deep neural
nets in genomics. Finally, we offer a historical perspective on the use of deep learning strategies
modeling RNA splicing. While this chapter serves as the background for the work, we also
highlight an early contribution that aligns with the concepts presented:

• We demonstrated the utility of deep learning models to score disease-causing variants in
intronic regions often missed by WES studies. I conducted the computational analysis for
this study.

L. Lopes, P. Barbosa, M. Torrado, et al., “Cryptic Splice-Altering Variants in
MYBPC3 Are a Prevalent Cause of Hypertrophic Cardiomyopathy”, Circulation:
Genomic and Precision Medicine, 2020 [35].

3.1 Deep learning revolution

The rise of deep learning methodologies in the early 2010s has profoundly transformed numerous
fields, driving unprecedented progress in technology and science. The emergence of large,
high-quality, publicly available labeled datasets, advances in hardware with Graphical Processing
Units (GPUs) for training neural networks, and continuous breakthroughs in architecture design
have been key factors contributing to the deep learning revolution [62]. In addition, the
appearance of powerful libraries such as TensorFlow [63] and PyTorch [64] has democratized
access to deep learning, enabling a wide range of research communities to tackle diverse problems.
In fact, deep learning has become so central to Machine Learning that when people talk
about Artificial Intelligence (AI), they are often referring to models that are themselves deep
learning-based solutions.
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Specific model architectures have driven advancements in different domains. For example,
deep Convolutional Neural Networks (CNNs) [65] are especially well-suited for Computer
Vision tasks such as image classification, object detection, and segmentation [66], while
Transformers [67] have revolutionized NLP problems like text summarization, question
answering, and machine translation [68]. Although primarily optimized for these data modalities,
these and other techniques have been successfully adapted to other objectives, including
scientific discovery [69]. AI methods can improve the traditional research workflow by
streamlining procedures for data collection and processing [70], exploring vast spaces of candidate
solutions [71], and providing insights that would otherwise be difficult to obtain [72].

In life sciences, deep learning has been successfully applied to predict molecular phenotypes
from genomics data. These models take a DNA sequence as input and aim to predict some
property of the sequence’s activity, such as gene expression [6], chromatin accessibility [73] or
transcription factor binding [26]. The high performance of such sequence-to-activity models,
combined with the application of explainable AI techniques, holds unprecedented potential to
deepen our understanding of cell biology and disease mechanisms.

In the following sections, we introduce Artificial Neural Networks (ANNs) as the foundational
concept for deep learning, describe the most widely used neural network architecture for
modeling genomics data (CNNs), and discuss techniques for interpreting sequence-based
genomics models. Finally, we delve deeper into the domain of application of this thesis: RNA
splicing.

3.2 Artificial Neural Networks

ANNs are computing systems inspired by the biological neural networks that compose animal
brains. To understand how ANNs are conceptually organized, we can look at the simplest
type of networks, the Multilayer Perceptron (MLP). An MLP is a neural network composed
of three types of layers: an input layer that receives the raw data, one or more hidden layers,
which perform non-linear transformations of the inputs and a final output layer, that returns
an output. Each layer is made up of nodes (neurons or units), each of them fully connected to
the neurons of the next layer (each connection transmits a trainable weight). When the neural
network includes a deep stack of hidden layers, it is called a Deep Neural Network (DNN), or
a deep learning model. Typically, an extra bias feature is added (bias neuron), which provides
every node with a trainable constant value (in addition to the normal inputs/weights that a node
receives). An MLP can be viewed as a generalization of (generalized) linear models, meaning
that each node in the hidden layers take the sum of their weighted inputs. The key difference is
that an activation function σ is applied to this value to introduce non-linearity into the model.
The parameterized function of a single MLP layer can be formulated as following:
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f(x, θ) = σ(xθ + b) (3.1)

where x represents the matrix of input features, θ represents the weight matrix (the parameter
values for all the connections, except those from the bias neuron), the b stands for the bias
vector that contains all the connection weights between the bias neuron and the hidden nodes,
and σ is the activation function. A frequently used activation function is the Rectified Linear
Unit (ReLU) defined as σ(z) = max(0, z).

3.2.1 Training deep neural networks

Training neural networks involves adjusting the weights to minimize the loss function, often
using optimization algorithms derived from Gradient Descent. While methods like Stochastic
Gradient Descent are common, optimizers such as ADAM and RMSprop have gained popularity
for their adaptive learning rates and incorporation of momentum-like behavior, which helps on
escaping plateaus where the derivative is close to zero [74]. Because computing the gradient
of the loss for each parameter would be intractable for DNNs, the backpropagation algorithm
efficiently computes gradients across the network in just a forward and reverse pass [75]. Briefly,
backpropagation employs the chain rule of calculus to recursively calculate the gradient of the loss
function with respect to each parameter. It propagates errors backward through the network,
adjusting the weights using the chosen optimizer. This iterative process operates on small
subsets of the training data, called batches, and completes an epoch when all batches comprising
the training data have passed through the network once. Training ends when a predetermined
number of epochs is reached, or when the model converges to a satisfactory level. At this stage,
the trained weights are used to evaluate the model’s performance on separate test data, ensuring
an unbiased assessment of its generalization power.

3.3 Convolutional Neural Networks

CNNs are a type of ANNs that are composed by specific layers, called convolutional layers, that
are specialized in the detection of patterns in the data. Neurons in convolution layers are not
fully connected to the input data. Rather, each neuron connects to regions of the input space
that belong to its receptive field. The receptive field is defined by the filter dimensions of the
layer. As an example, in image classification, a neuron in a convolutional layer connects only to
pixels of the image defined on its respective field.

A filter, which can be a small matrix of values, slides the input data and at each location
applies linear transformations so that an output value for each location is obtained. The output
of this sliding operation is a feature map, which highlights the areas of the input data that
activate the filter the most. The great thing is that filters do not have to be defined manually:
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during training, the convolutional layer will automatically learn the most useful filters for the
task - filters are the weights in a convolutional layer. All neurons within a feature map share the
same weights, which dramatically reduces the number of parameters of the model. In practice,
a convolutional layer usually has multiple filters and outputs one feature map per filter, making
it capable of detecting multiple features anywhere in its inputs. This type of layer thrives in
array data (e.g., images, videos) because groups of values are often highly correlated, forming
distinctive local motifs that can be easily detected. The output of this layer is followed by a
nonlinear activation function (e.g., ReLU), similar to fully-connected layers.

In genomics, a 1-dimensional convolutional layer is applied to one-hot-encoded DNA
sequences. The filters applied to the sequence are analogous to a Position Weight Matrix
scanning the sequence. Importantly, since the filter scanning partially contributes to translation
invariance - the ability to recognize patterns regardless of their position -, the model can
generalize to motif positions not seen during training.

A typical CNN architecture stacks multiple convolutional layers (each followed by non-linear
activation functions), interspersed with pooling layers (Figure 3.1). As the network gets deeper,
it learns how to combine low-level feature maps into higher-level feature representations. At the
top of the stack, fully-connected layers are often added at the end to translate these learned
features into predictions for classification tasks.

3.3.1 Pooling

Convolutional layers are often accompanied by pooling layers. A pooling layer aims to subsample
the input data, reducing computational load, memory usage and number of parameters. Just
like a convolutional layer, a pooling layer scans the input data (in this case, the feature maps
passed by the previous layer) and aggregates the inputs using an aggregation function such as the
max or mean, returning just a single value to the next layer, which means that it does not have
trainable weights. This layer also contributes for translation invariance as the down-sampling
of feature maps can make the output more robust (invariant) to changes in the position of the
features.

3.3.2 Dilated convolutions

Dilated convolutions are a variant of the standard convolutional layer that allow increasing the
receptive field of the network without increasing the number of parameters [77]. This is achieved
by using special filters that skip some input values. The dilation rate defines the number of
positions to skip, and it typically increases with every subsequent dilated convolutional layer.
Dilated convolutions are particularly useful tasks where capturing long-range dependencies is
important.
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Figure 3.1: Convolutional neural network modelling genomics sequences. a - One-hot encoding representation
of the DNA sequence. b - Filters of the first convolutional layer scan the input sequence. c - Negative values are
truncated to 0 using the ReLU activation function. d - Max pooling operation summarizes contiguous bins of the
activation map by taking the maximum value for each channel in each bin. e - The second convolutional layer
scans the sequence for pairs of motifs and for instances of individual motifs. f - Similar to the first convolution,
ReLU activation function is applied. g - The maximum value across all positions for each channel is selected. h
- Fully connected layer is used to make the final prediction. Figure and legend adapted from [76].

3.3.3 Regularization

Regularization techniques are used to prevent overfitting and improve convergence during
the optimization process by keeping the weights and activations within a reasonable range.
Regularization is particularly important to prevent vanishing or exploding gradients, specially
in networks with many layers. Common regularization techniques include Dropout [78] and Batch
Normalization (BatchNorm) [79]. In Dropout, a certain percentage of neurons are randomly set
to zero during training, forcing the network to not rely too much on single neurons and thus
learn more robust feature representations. Batch Normalization normalizes the layer activation
by subtracting its mean and dividing by standard deviation across multiple samples in the batch,
which results in more stable training as the magnitude of the activations throughout the network
is relatively uniform.

3.4 Model interpretation

Thanks to the development of multiple genome-wide assays that generate large collections
of sequence data with a given readout, a plethora CNNs have been successfully applied to
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predict molecular phenotypes from genomics data. By understanding the properties of the data
underlying successful predictions, it is hypothesized that new biological insights can be derived
using these models as interrogation tools. We next discuss several post-hoc model interpretation
techniques that are part of the rapidly evolving field of xAI.

3.4.1 Model-based interpretation

Model-based techniques examine individual components of the model. In genomics, because the
filters learned by the first convolution layer may represent short subsequences of binding motifs
(Section 3.3), one can apply a softmax transformation (with further scaling) to a convolution
weight matrix to visualize the matrix associated with a filter [30]. A more faithful strategy in
practice is to search for subsequences in a dataset that activate a given filter the most [80, 81]. Of
note, the extraction of these subsequences does not imply that they are important. Additional
experiments, such as ablating or masking the filter, are required to measure their impact on the
prediction.

3.4.2 Propagation of influence

This class of algorithms operates directly on input sequences by propagating perturbed data
through the model and measuring the effect on predictions. They can be grouped into forward
and backward propagation methods.

In silico mutagenesis

Forward propagation methods include In silico mutagenesis (ISM), which employs systematic
mutations to each nucleotide in an input sequence and computes the change in the model
outcome due to each mutation (Figure 3.2A). In contrast to other approaches that are discussed
next, ISM truly represents the model’s response to genetic mutations at individual positions,
making it the standard approach to predict the clinical impact of Single Nucleotide Variant
(SNV)s [5]. Although conceptually attractive, ISM is computationally expensive because it
involves a forward propagation pass for every mutation tested (3L where L is the length of
the sequence). To address this problem, one can limit the analysis to a subset of sequences
based on hypothetical insight value (e.g., high score prediction), or restrict the analysis to a
subset of sequence regions deemed important for the task. For example, perturbing known
transcription factor motifs can hold great explainability value, although it requires a priori
knowledge of the motif locations. Recently, a new strategy called fastISM [22] has been developed
to accelerate the computation of ISM scores. This method leverages the unique properties of
CNNs to avoid redundant calculations and efficiently compute values within the receptive field
of a given convolution filter.
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Figure 3.2: Strategies for neural network interpretation. A - Example of using ISM to interpret a
sequence-based DNN. At the top, model predictions for two sequences are obtained, one for the reference sequence,
other with a mutated feature. Feature importance scores are computed by subtracting the scores (or by applying
any other transformation). These scores can be visualized as an attribution map, in the bottom: each square in
the heatmap represents the effect of a single perturbation in the model prediction. Blue and red colors represent
a negative and positive effect, respectively. The highlighted square at the center represents the mutated feature
in the sequence represented in the top. Image adapted from [82]. B - Gradient and model-based approaches
for neural network interpretation. IG = Integrated Gradients; EIG = Enhanced Integrated Gradients. Image
adapted from [83].

Saliency maps and derivatives

Backward propagation methods address the computational overhead of ISM by using
backpropagation to efficiently decompose the output prediction of a model into character-level
attribution scores in a single pass [30]. The most straightforward method, commonly referred
to as a saliency map ([84]), computes the gradient of the output with respect to the input data
(Figure 3.2B). Feature importance correlates with the amount of the gradient they receive after
backward propagation. Gradient-times-input [85] slightly extends Saliency maps by doing an
element wise multiplication of each input feature with the gradients they receive. In the context
of genomics, where inputs are one-hot encoded, this translates to computing the gradient on the
bases that are present in the sequence. These approaches can be problematic because activation
functions such as ReLU have a gradient of zero when they are not firing. Due to this, Saliency
maps fail to highlight inputs that contribute negatively to the output. Small variations to this
approach like Deconvolution Networks [86] or Guided Backpropagation [87] have been proposed,
and basically differ in the specific backpropagation logic for the activation function.

A major drawback of these methods is the so-called saturation problem, which underestimates
the importance of features that have saturated their contribution to the output. For example,
in a sequence with multiple copies of the same binding motif, the model’s overall sensitivity to
this motif is spread across the multiple copies. Consequently, this redundancy can cause the
individual feature attributions to be underestimated.
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Reference-based methods

Reference-based methods were proposed to address the saturation problem. Here, feature
attribution reflects the comparison of a neuron’s activation to a given input reference or baseline
(Figure 3.2B). This reference is the activation that the neuron would have when given a
reference input. For genomics, a mononucleotide or dinucleotide shuffling of the input sequence
is considered a reasonable reference [30].

Integrated Gradients [24] proposes an axiomatic approach for feature attribution. It is
computed by integrating the gradients along a linear path from the reference input to the
actual input, which is approximated by summing the gradients at points along this path. A
feature has a high attribution value when the integrated gradient shows it significantly affects
the change in activation from the reference to the input. Enhanced Integrated Gradients [25]
extends Integrated Gradients by introducing alternative non-linear path formulations.

DeepLIFT [88] differs from Integrated Gradients by comparing the differences in activation
between the input and the reference at every node of the network. These differences are
propagated backwards through the network using specific rules to ensure that each node’s
contribution at specific layers is accurately accounted for. These rules address gradient
discontinuities at certain layers, with one of the rules shown to approximate Shapley values [89].

Importantly, backpropagation-based methods can be computationally expensive when
applied to large multi-task models, such as those predicting multiple molecular phenotypes [80]
or returning vector outputs representing quantitative regulatory profiles [26]. In these instances,
a separate backpropagation pass is required for each task or output dimension to estimate
comparable feature attribution per task. In contrast, ISM might be more efficient, as perturbing
individual nucleotides reveals the impact on each output in a single pass.

From local to global interpretations

The propagation methods discussed so far provide local explanations, meaning that they explain
a single input sequence. To aggregate results across multiple inputs into a global understanding
of feature importance, TFMoDisco [90] was specifically this task. It uses attribution scores
from methods like DeepLIFT to extract sequence regions with high attribution scores (seqlets),
calculates their similarities, and performs clustering based on the similarity matrix between
pairs of seqlets. Final consensus motifs are generated upon cluster refinement. Nevertheless,
the method is highly dependent on the quality of the attribution scores (e.g., the choice of
the reference has a significant impact on the results [88]), and typical challenges of clustering
remain, like the choice of the number of cluster and similarity metrics. In addition, TFMoDisco
itself does not reveal effects of motif combinations and spacing, requiring additional analysis to
understand such motif rules [26].
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3.4.3 Probing feature interactions

Current feature attribution methods do not explicitly quantify interactions between features,
such as epistatic interactions (e.g., motif cooperation or competition). However, the power
of CNNs lies in their hierarchical structure, which allows them to learn complex non-linear
interactions between features. Hence, one can naively examine sequences that activate deeper
layers (as done in Section 3.4.1 for the first convolutional layer).

Alternatively, tweaked versions of ISM can be applied to experimentally test inserting two
motifs into a random sequence (a type of marginalization experiment) and observing the effect
of perturbing one motif while keeping the other fixed. This setup probes both additive and
non-additive effects between motif pairs and can also be used to assess the impact of motif
spacing [30]. A related strategy, termed Deep Feature Interaction Maps (DFIM) [91], quantifies
similar interactions but instead uses backpropagated-based methods to compute changes in
the importance of a target feature when a source feature is perturbed. Recently, an in silico
perturbation toolkit named CREME [92] was developed to test the contribution of various
components on model prediction. These include not only higher-order interaction tests, but also
the impact of surrounding context, the sufficiency of individual regulatory elements, and their
distance effects.

3.4.4 Transparent models

Unlike post hoc methods, which provide explanations for already trained models, training
interpretable models involves designing them with transparency at their core. We categorize
these models into two types: DNNs with inherently interpretable units (interpretable-by-design
models) and surrogate models, which are simpler, transparent models trained to approximate
the behavior of complex black-box models. In addition, we introduce evolutionary algorithms
as a potential strategy addressing model interpretability, as they will be relevant for the work
presented in this thesis.

Interpretable-by-design models

Interpretable-by-design models embed prior knowledge into the architecture design, ensuring
the encoded knowledge is at a level of abstraction that humans can understand. For example,
graph-based architectures embedded with ontologies learned to prioritize domain-specific
hierarchies and interactions between concepts, such as gene mutants affecting specific gene
ontology processes [93] or revealing therapeutic targets for prostate cancer [94]. However, these
models are not trained with genomic sequences, which is the focus of this thesis.

Training sequence-based models with interpretable units requires initializing convolutional
filters with known motifs [95, 96] or fixing filter lengths to specific problem domains [97].
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Importantly, the learned filters may drift away from those used for initialization [30], and
applying such constraints may not be feasible for domains with insufficient prior knowledge.
Recently, an approach based on Neural Additive Models (NAMs) [98] was proposed for
genomics data. Briefly, ExplainNN [21] computes predictions as a linear combination of
multiple independent CNNs, each containing a single convolutional layer with a single filter, an
exponential activation and two fully connected layers. The learned weights of each unit in the
fully connected output layer are interpretable, similar to those in a linear model. However, this
linearity can compromise accuracy on complex, realistic genomics tasks. The authors observed
that it hampered the model’s ability to learn complex interactions between motifs of different
transcription factors [21]. Additionally, further analyses are required to convert the filter of each
unit into a biologically meaningful Position Weight Matrix (PWM).

Surrogate models

Surrogate models provide an interpretable approximation of complex deep learning models.
These simpler models, such as a decision tree or linear regression, are trained to mimic the
behavior of the more complex model, offering insights into its decision-making process. Due to
the complex and highly parameterized nature of DNNs, surrogate models are often trained to
approximate the DNN locally, aiming to explain a single or a few related instances.

The most popular of such surrogate modelling approach is Local Interpretable Model-agnostic
Explanations (LIME) [31], which samples data around a target instance and trains a linear model
on this synthetic dataset to approximate the predictions of the original model. LIME is limited
by the difficulty of defining a meaningful neighborhood when sampling data [99], especially
since two close data points may result in very different explanations [100]. Additionally, LIME
does not capture non-linearities and heteroscedastic noise, which are prevalent in genomics
data. To address these shortcomings, SQUID [34] was recently proposed to model the DNN in
local regions of the sequence space using latent phenotype models (via MAVE-NN [101]), fitted
on randomly generated synthetic data surrounding an input sequence. The parameters of these
local surrogates (e.g., additive genotype-phenotype maps) can then be interpreted with standard
attribution methods (Section 3.4.2).

Evolution-inspired approaches

Evolutionary algorithms (EAs) present an alternative approach for xAI, employing optimization
techniques inspired by natural evolution to iteratively improve solutions over generations. In
this context, a solution may constitute an explanation for a DNN prediction, which represent
evolved interpretable feature sets that mimic the complex model (as done with genetic algorithms
for explaining CNNs for image classification [102]). Alternatively, EAs can generate the local
synthetic dataset for local surrogates, creating instances that best cover the DNN’s decision
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boundary, as seen with LORE [32], a popular alternative to LIME. EAs begin with a population
of candidate solutions (individuals), evaluated based on a fitness function. Selection chooses the
best-performing solutions to act as parents for the next generation, with genetic operators like
crossover and mutation creating offspring. This iterative process continues until a termination
criterion, such as a maximum number of generations or a satisfactory fitness level, is met.

An attractive subset of evolutionary algorithms is Genetic Programming (GP) [103], which
evolves functional structures like computer programs or algebraic expressions without requiring
prior knowledge of the solution’s structure. GP can produce both linear and nonlinear models,
naturally represented in interpretable tree structures [29]. Specifically, GP encodes solutions
as structured syntax trees, where variables and constants are the leaves (terminals) and
various operations or functions are the internal nodes. Importantly, these functions can be
domain-specific, not just arithmetic operators. One way to encode domain-specific operations is
by representing individuals through the use of grammars, known as Grammar-Guided Genetic
Programming (GGGP) [104] (Figure 3.3). Grammars encode expressive rules that restrict the
solution structure to the desired level of abstraction, making interpretability straightforward by
simply evaluating the phenotype (the resulting tree) of the solution. Although never applied
to genomics, we believe that GP constrained with grammars can be a powerful framework for
DNN interpretability, and will be further explored in this thesis.

GP LOOP

Population 

initialization

Interpretable

solution

Fitness evaluation

Reached stopping

criteria ?No

Yes

Selection

Genetic operators

Grammar
...

<Rules> ::= ...

 ...

<Concept1> ::=

<Concept2> ::=

Figure 3.3: Representation of Grammar-guided Genetic Programming. The key aspect is the use of a grammar
that defines the syntax of the solution space. In genomics, the grammar can encode abstractions such as motifs,
motif combinations, and motif spacings. The evolution process searches for fine-grained representations within
these grammatical concepts. The final program (e.g., a local surrogate model predicting the DNN score), is
inherently interpretable because it adheres to the predefined grammar.
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3.5 Deep learning models of RNA splicing

We can roughly divide computational models of RNA splicing into two major categories. A first
group of models predicts the probability or usage of core splicing signals such as splice sites or
branchpoints from primary genomic sequences. The second group focuses on predicting splicing
across different conditions or tissues. Next, we introduce the type of data used to train these
models, and provide an overview of models from each category.

3.5.1 Genome-wide quantification of splicing

Next Generation Sequencing (NGS) technologies enable large-scale transcriptome analysis.
RNA-Seq, a widely used transcriptome sequencing approach, provides an overview of mRNA
types and abundances in a population of cells. Sample size varies with sequence pool complexity
and can include millions of sequencing fragments [105], which are then sequenced into short
reads.

The RNA-Seq analytics pipeline involves mapping these short reads to a reference genome to
quantify gene expression levels and alternative splicing patterns. While quantifying splicing at
the gene isoform level is possible, reconstructing full splicing isoforms from short RNA-seq reads
is challenging [106]. Instead, researchers often employ a more practical event-based approach,
which measures binary (or more complex) splicing changes at the exon level.

Splicing outcomes are expressed as percent-spliced-in (PSI) (ψ ∈ [0, 1]), which quantifies an
exon’s relative inclusion level by measuring the ratio between reads supporting inclusion and
the sum of reads supporting inclusion and exclusion. A PSI value of 1 indicates constitutive
inclusion, while 0 indicates total exclusion. Differences in PSI are expressed using delta
PSI (dPSI) (∆ψ ∈ [−1, 1]). Because RNA-Seq data exhibits heteroskedastic noise, contains
systematic sampling bias (e.g., varying sequencing depth), and displays positional and sequence
biases [107], specialized software is required to accurately estimate sample PSIs and dPSIs
across conditions [108–110]. Downstream analyses typically examine exons with significant dPSI
changes across conditions or tissues, which are often associated with the biological phenotype
of interest.

Classical experiments to study splicing regulation often involve a gene knockdown to silence
or reduce expression of a target gene. By knocking down an RBP and performing RNA-Seq on
these cells, researchers can compare their splicing patterns with control samples. This allows the
identification of exons with altered splicing patterns due to the RBP knockdown. Additionally,
the binding profile of the RBP can be characterized through CLIP-based technologies [111], such
as eCLIP [112]. The data generated identifies regions of the genome that the RBP binds to. By
correlating these binding sites with the splicing outcomes measured in the knockdown RNA-Seq
experiments, researchers can learn how the RBP modulates splicing [113].
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3.5.2 Predicting core splicing signals

Several sequence-based strategies to predict splicing elements have existed for quite some time.
Early approaches relied on principles such as maximum entropy modeling [114], PWMs [115],
Markov models [116, 117], or k-mer-based features [118, 119] to score splicing elements. Most
initial CNNs framed splice site prediction as a binary task, using architectures with few
convolutional layers - SpliceFinder, for instance, used just one convolutional layer [120] - and
typically accepted short input sequences [121, 122], or split the splice acceptor and donor
predictions into separate models [122, 123]. More recently, Spliceator extended these concepts
to predict splice sites across multiple species within the eukaryotic domain [124].

SpliceAI

In 2019, a landmark paper introduced SpliceAI, an end-to-end approach for splice site
prediction [38]. Given its significance to this thesis, we describe this model in greater detail.
Unlike previous methods, SpliceAI employs residual blocks [125] for computer vision tasks.
Residual blocks in SpliceAI consist of BatchNorm layers, ReLU activation functions, and
convolutional layers organized with skip connections (Figure 3.4). These skip connections
enable the training of very deep networks by mitigating the vanishing/exploding gradient
problem, thereby maintaining gradient flow during backpropagation and allowing for faster
convergence [125].

Additionally, the convolutional units within each residual block apply increasingly larger
filter sizes and dilation rates, which capture long-range dependencies in the sequence. The
architecture of SpliceAI is designed to evaluate each position using a 10kb nucleotide sequence
context, significantly larger than that used by any other splicing model. The output is a sequence
of predictions representing the probabilities of each position being a splice donor, acceptor, or
neither.

SpliceAI was trained on raw transcript sequences, with labels indicating splice site
positions extracted from GENCODE annotations [126] and Genotype-Tissue Expression (GTEx)
RNA-Seq data [127]. SpliceAI demonstrated remarkable results in predicting genetic variants,
particularly de novo variants affecting cryptic splice sites. This achievement presented, for the
first time, realistic hope that a model could predict clinically relevant deep intronic mutations
affecting splicing [38].

Inspired by SpliceAI, Splam [128] differs in its number of residual blocks and modified
convolutional layer parameters. It is designed for efficiency, using much smaller input contexts
(800bp). Donors and acceptors from splicing isoforms were trained in pairs, with 200bp on each
side of each splice site concatenated to form the input sequence. Additionally, the authors suggest
that Splam’s splice site scoring can correct errors in spliced RNA-Seq alignments. Unfortunately,
the model does not predict variant effects.
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Figure 3.4: SpliceAI’s model architecture. Each Residual Block, termed ‘RB’, employs the same number
of filters ‘N’ in each convolutional layer (N=32), but the filter size ‘W’ and dilation rate ‘D’ increase with each
block. A final layer applies the softmax function to output the probabilities of each position being a splice donor,
acceptor, or neither. Figure adapted from [38].

LaBranchoR

Besides splice sites, another crucial splicing element is the branchpoint (Figure 2.1). While
non-deep learning models exist for scoring branchpoints [129–131], LaBranchoR [132] is the
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state-of-the-art deep learning model for branchpoint prediction.
LaBranchoR predicts splicing branchpoints directly from raw RNA sequences located 1 to

70bp upstream of genome-wide annotated 3’ splice sites. It employs a two-layer Bi-directional
Long Short Term Memory (Bi-LSTM) neural network with 32 hidden nodes in each direction per
layer. Per base predictions are computed by taking a linear combination of the hidden states of
the second layer and applying a sigmoid function to return the probability of each input position
being a branchpoint site.

Models quantifying ψ

Unlike SpliceAI and earlier splice site predictors, which output probabilities for a sequence or
position being a splice site, other models predict quantitative readouts of splicing outcomes. For
instance, COSSMO [133] predicts ψ values from sequences by modeling the competition between
alternative splice sites (e.g., 5’SS) given a fixed constitutive splice site (3’SS). The model outputs
a discrete probability distribution over the alternative sites, indicating the frequency with which
they are selected, serving as a proxy for ψ.

MMSplice [134] is a modular framework that predicts various components of splicing. It
leverages multiple individual ANNs that score elements such as splice sites (trained from splice
junctions from GENCODE), or ψ values using exon and intron modules trained with synthetic
sequences from a Massively Parallel Reporter Assay (MPRA) [119]. Several regression models
combining individual modules were then designed to predict variant effects on ψ and splicing
efficiency, while a logistic regression classifier was used to predict pathogenicity.

3.5.3 Tissue-specific models

This category of approaches, under the umbrella of splicing codes, models splicing outcomes
across multiple conditions, such as tissues. Early models used handcrafted splicing features
from genomic sequences of cassette exons and their flanking introns [135, 136]. Due to the noisy
nature of splicing quantifications (at the time using microarray data), modeling ψ or ∆ψ as
continuous random variables was challenging. Thus, the task was formulated to predict the
probability of differential splicing between tissue pairs.

Leung et al. [137] and Xiong et al. [138] used a fully connected neural network and a Bayesian
Neural Network, respectively, to improve over the previous methods by incorporation of splicing
quantifications from RNA-Seq data to predict real-valued absolute ψ values in more tissues.
The latter, called SPANR [138], was a pioneering effort in quantifying tissue-specific effects of
genetic variants on splicing. A later attempt tried to incorporate CLIP data into these models,
but the results were modest [139].

With the advent of CNNs and large-scale tissue-specific RNA-Seq data (e.g., GTEx
consortium), new models trained directly from raw sequences emerged. MTSplice extends the
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MMSplice framework to quantitatively predict tissue-specific variant effects [140], proposing a
new CNN (TSplice) that predicts ψ values across 56 tissues using a multitask learning approach.

Pangolin [141] leverages the SpliceAI architecture, with slight modifications in the last
two layers, to predict both splice site usage and probability from primary sequences using
tissue-specific RNA-Seq data from multiple species.

Recently, the AbSplice framework [142] was developed to predict tissue-specific splicing
outliers (large ∆ψ changes) caused by genetic variants. The authors created tissue-specific
splice site annotations (SpliceMaps) and combined them with SpliceAI and MMSplice to build a
generalized additive model, providing probability estimates of aberrant splicing in a given tissue
of interest.

3.5.4 Summary

This section provided an overview of deep learning models applied to RNA splicing, highlighting
key conceptual advances. Early in this PhD work, we confirmed the potential of deep learning
to score clinically relevant intronic variants. In a large cohort of Hypertrophic Cardiomyopathy
patients, we identified cryptic splice site variants and a branchpoint-disrupting variant in the
MYBPC3 gene using SpliceAI and LaBranchoR, respectively, which co-segregated with disease
phenotypes in families [35].

Next, we will benchmark these models, along with others focused on interpretability, for
predicting disease-associated deep intronic variants across various diseases, sequence contexts,
and splicing defects. This task serves as a challenging test to assess the generalization capacity
of these models and their understanding of the splicing mechanism.
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Predicting intronic variants affecting the
splicing mechanism

This chapter presents a benchmark of the state-of-the-art methods for predicting and interpreting
deep intronic variants that disrupt RNA splicing. Towards this goal, we first provide a
comprehensive overview of VEPs, their scope and limitations and then we developed a software
to streamline VEPs benchmarking. Moreover, we curated several relevant datasets for the task,
including a new dataset of deep intronic variants causing human disease and region-specific
variant sets disrupting splicing through different molecular mechanisms. This work gave rise to
multiple contributions:

• Development of VETA, a software for benchmarking variant prediction tools.
Code: https://github.com/PedroBarbosa/VETA
Paper: P. Barbosa, M. Ribeiro, M. Carmo-Fonseca, A. Fonseca, “Clinical
significance of genetic variation in hypertrophic cardiomyopathy: comparison of
computational tools to prioritize missense variants”, Frontiers in Cardiovascular
Medicine, 2022 [36].
Reproducibility: https://github.com/PedroBarbosa/paper_HCM_benchmark

• Manual curation of splicing-disrupting benchmark datasets
DOI: https://doi.org/10.5524/102423

• A simple tool that processes VCF files and generates the correct input to run several
sequence-based splicing predictors.

Code: https://github.com/PedroBarbosa/Prepare_SplicingPredictors

• Benchmarking performance and interpretability of VEPs in deep intronic regions.
Paper: P. Barbosa, R. Savisaar, M. Carmo-Fonseca, A. Fonseca, “Computational
prediction of human deep intronic variation”, GigaScience, 2023 [37].
Reproducibility: https://github.com/PedroBarbosa/DeepIntronic_Benchmark
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4.1 Introduction

Genetic variation plays a crucial role in understanding human disease and trait inheritance. Yet,
for a long time, studies paid scant attention to variants in intronic gene regions [143], which were
thought to harbor little functional variation. With the widespread adoption of WGS, intronic
variants can be identified more effectively than ever before. Nevertheless, the large number of
candidate variants discovered brings significant challenges for their functional interpretation [16],
especially for those affecting RNA splicing [17].

Given the challenges of interpreting deep intronic mutations (previously discussed in
Section 2.1.2), computational tools are often used to prioritize variants based on their likelihood
of being deleterious. The first wave of methods used large genomics datasets to engineer features
(e.g., allele frequencies from ExaC [144] or histone modification levels across cell lines from
ENCODE [145]) and to build classifiers that work on tabular data. More recently, end-to-end
deep-learning methods predict the impact of genetic variants from sequence alone, with the
features automatically extracted within the network [76]. SpliceAI [38] is widely recognized
as the most successful method of this kind, although its performance has been shown to vary
across studies and datasets considered [17]. Recently, new models have been developed based on
SpliceAI, either combining its predictions with other sources of information (such as genetic
constraint for ConSpliceML [146] and PDIVAS [147], or tissue-specific splice site usage for
AbSplice-DNA [142]), or even creating an entirely new model based on SpliceAI architecture.
For example, Pangolin [141] uses splicing quantifications from multiple species and tissues to not
only predict whether a position is a splice site (as SpliceAI does) but also to predict splice site
usage (e.g., how much a splice site is being used in a given tissue). In contrast, CI-SpliceAI [148]
uses different training labels for true and false splice site positions based on a collapsed transcript
structure derived from GENCODE [126] annotations.

Most intronic variant prediction benchmarking studies are performed by the authors of
the tools to present a comparative analysis with existing methods. Even subconsciously,
biases might be favoring the proposed model, be it because of the dataset selected or the
methodology employed for the comparison [149, 150]. Multiple independent benchmark studies
do exist [151–157], however, their scope is often somewhat limited. Firstly, some studies only
focus on variants overlapping particular types of splicing information, e.g. splicing regulatory
elements [151, 153]. Secondly, only using variants from a few genes can render the genome-wide
extrapolation of conclusions difficult [152, 154, 156]. Lastly, to our knowledge, no study compares
the performance of promising and recently developed methods such as Pangolin, CI-SpliceAI,
ConSpliceML, AbSplice-DNA, PDIVAS and SPiP [158].

To help researchers and clinical practitioners understand prediction tools and how they can
be applied to interpret genetic variants in introns, we conducted a comprehensive evaluation
of a series of tools for the task of predicting functional variation in the intronic space far
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from canonical splice sites (Sections 4.4 to 4.6). To this end, we carefully selected intronic
variants from multiple sources and curated a new set of disease-causing deep intronic variants
affecting RNA splicing (Appendix A.1). Besides evaluating the capacity of tools to predict
functional variants deep within introns, we also report, for the first time, an assessment of the
interpretability of these tools’ outputs (Section 4.7) and their capacity for accurate tissue-specific
variant prediction (Section 4.8). We finally provide clear recommendations for tool usage
depending on the variant’s location within the intron and its molecular effect (Section 4.9).

4.2 The prediction tools studied are diverse in methodology and
objectives

We now provide a snapshot of the state-of-the-art of methods that predict, in any way, functional
variation in introns (Table 4.1, details on how we annotated VCF files with VEPs scores in
Appendix A.2). We divided the methods into four different categories: conservation scores
that measure the degree of evolutionary conservation at a given position or region of the
genome; genome-wide predictors that integrate multiple feature types to predict variant effects
regardless of the variant type; methods that focus on splice-disrupting variants and allow for
automated batch predictions; and splicing-specific methods that solely target specific types
of splicing information (e.g., BP), or require the use of a web application to retrieve results.
For many tools, there are two fundamentally different ways to obtain predictions: making de
novo model inferences given an input variant set or using pre-computed predictions, which is
faster computationally. We decided to use pre-computed predictions when available because it
considerably simplifies the variant annotation pipeline and is thus accessible to a more diverse
set of end users. However, it should be noted that this approach may miss some indels that are
not represented in the pre-computed databases. Of the 38 tools used to score at least one dataset
in this study, 19 had pre-computed databases available (Table 4.1). Because some of them only
provide predictions for the GRCh37 genome build, we ran all experiments using this genome
version. Of note, pre-computed predictions are a permanent representation of a model version,
which may not be updated along with developments to the tool. However, we observed that
only one tool, CAPICE [159], had outdated pre-computed scores. Importantly, not every tool
considered was built with deep intronic regions in mind. For example, some tools were explicitly
trained only to score consensus splice site variants (e.g. MaxEntScan [114], dbscSNV [160]),
while others only output predictions up to an approximately defined distance between the
variant and the nearest splice site (e.g., 300 bp for SPIDEX [138] or 50 bp for MLCSplice [161]).
In addition, we ran certain models (KipoiSplice4 [82], HAL [119], MMSplice [134]) using the
Kipoi framework [82], which further restricts predictions to a tool-specific distance between the
splice site and the variant. Therefore, we expected these methods to perform poorly on some
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comparisons simply because the fraction of missing predictions should increase when moving
further into the intron. Still, we decided to include these tools in the study because many of the
variants evaluated locate within the distance that we expected these tools to cover.

It should also be noted that the tools were built for different tasks. While some models
were designed to distinguish between pathogenic and benign variants (e.g., S-CAP [162],
KipoiSplice4), others predict variant effects on splicing outcome, which does not necessarily
translate into disease (e.g., SPiP, MMSplice). The latter category comprises sequence-based
deep learning models such as SpliceAI or Pangolin. While these packages accept genetic
variants in VCF format as input, it is important to note that the models primarily operate
on sequences. They predict the probability of a given sequence position functioning as a splice
site. If the model is run twice, once with the reference and once with the mutated sequence,
it is possible to assess splice site alterations caused by genetic variants with the so-called
delta score (mutated - reference allele). This has been the major practical use of the tool
so far. Using the same rationale, we also included several sequence-based methods that predict
splicing-related elements. These include SpliceRover [123], DSSP [122], and Spliceator [124] for
splice site-associated variants, ESEfinder [163], ESRseq [118] and HEXplorer [164] for variants
affecting splicing regulatory elements, and SVM-BPFinder [129] and BPP [130] for variants
impacting the BP signal. Of note, we only employed these methods for the datasets deemed to
be relevant given their original task.

4.3 Enabling variant effect prediction benchmarking with VETA

VEPs are highly heterogeneous, with their input requirements and output formats varying
significantly. In addition, the number of VEPs is continuously increasing, making it challenging
to keep track of their underlying methodologies, the interpretation of the output score and
decision threshold for fair assessment against other methods [165]. Therefore, we developed
Variant prEdiction Tools evAluation (VETA), with the goal of simplifying benchmarking of
VEPs and standardizing such an important aspect of variant interpretation. VETA has
embedded support for more than 50 VEPs, yet users can easily add custom methods not included
by default. Figure 4.1 provides a high level overview of VETA workflow.
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Figure 4.1: VETA high level workflow. VETA has two main running modes, benchmark and interrogate.
The former assumes labeled data and benchmarks VEPs based on that information. The latter ranks variants
according to the consensus among predictive tools regarding pathogenicity. In either mode, VETA takes care of
harmonizing and standardizing the diverse set of VEPs outputs, rendering them ready for the analysis.

Briefly, VETA takes as input labelled VCF files (e.g., benign and pathogenic variants)
annotated with ensembl VEP [188], the most used variant annotator. This single requirement
has the main purpose of enabling more fine-grained analyses, depending on the user needs. For
example, the VCF may contain variants occurring at different genomic locations (e.g, coding,
intronic, untranslated regions (UTRs)). By taking advantage of ensembl VEP annotations,
VETA can automatically stratify benchmarks for each region, where performance may differ
significantly [189]. Moreover, VETA includes evaluation metrics that deal with different
scenarios such as class unbalancing, the lack of decision thresholds or low coverage (high rate of
missing predictions).

4.3.1 Threshold calibration

One import aspect for using VEPs in variant interpretation for clinical purposes is determining
the decision threshold at which a variant is considered to harbor evidence towards pathogenicity.
Often, tool authors do not provide a clear threshold, of if provided, it may be inadequately
calibrated. VETA offers a straightforward way for deriving an optimized threshold, allowing
for different levels of importance given to precision and recall. In short, for each tool VETA
calculates the F-Beta score across 100 thresholds uniformly distributed over the observed range
of scores, according to the formula:

Fβ = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall

(4.1)
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where β is a parameter allowing to balance the weight given to precision
(TruePositives(TP )/ TP+FalsePositives(FP )) and recall (TP/TP+FalseNegatives(FN)).
VETA tests three β values by default: 0.5, 1 and 1.5. For each β value, the threshold that
maximizes the F-Beta function is selected as calibrated threshold. Higher β values favor
sensitivity, allowing to capture more pathogenic variants at the cost of increasing false positives.
Conversely, lower β values favor precision, at the cost of possibly missing some true positives.

The reliability of the adjusted thresholds can be further examined through bootstrapping.
For each tool, 1000 bootstrap samples are generated, ensuring the same class ratio as in the
original dataset. Then, the best threshold is derived for each bootstrap sample as described
above with the Fβ formula. Finally, the 0.025 and 0.975 quantiles of the distribution of the
bootstrap sample statistic (which is a distribution of the best thresholds) are computed. These
values are then used to interrogate at which threshold range 95% of the bootstrap sample statistic
lies, and how wide/narrow this interval is in respect to the threshold obtained with the true data.

4.3.2 Combining tools into meta-predictors

Many VEPs incorporate predictions from other VEPs as features within their models (e.g, [142,
146, 147, 161]). They are called meta-predictors, and the rationale behind them is that exploiting
and combining the strengths of different methods can lead to more robust results. VETA has a
module that combines predictions of multiple tools and creates meta-predictors using standard
scikit-learn models [190]. Importantly, VETA automatically streamlines hyperparameter
optimization via grid search, evaluates the models with stratified cross-validation, and compares
performance of the meta-predictors with individual counterparts.

These utilities serve as an initial step in assessing the potential advantages of combining
multiple methods. Accordingly, VETA seamlessly integrates feature importance analysis (e.g,
information gain, recursive feature elimination) to study which tools are more likely to provide
complementarity to the meta-predictor.

4.3.3 Faithful benchmarking of intronic variants

VETA is designed to handle the specificities of intronic variants. For instance, it is expected
that variants located at the splice site dinucleotide are likely to disrupt splicing and therefore
VEPs, trained with this information, should perform well. However, the further the variant is
from the splice site, the more challenging it may be to predict its effect. VETA stratifies the
benchmark in bins, according to the distance between the variant and the nearest splice site.
As it will be discussed in the next section, this feature was crucial for more realistic evaluation
of the tools. To add on that, it is possible to do separate benchmarks for variants closer to
acceptor and donor splice sites, which may also be of great utility.
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4.3.4 Availability

VETA is a versatile software that can be used to benchmark VEPs in a standardized way.
Moreover, it includes an interrogate mode that ranks variants according to how much VEPs
agree on their evidence for pathogenicity, regardless of existing labels. It is of practical use in
whole-genome and exome sequencing studies to help narrow down candidate variants for further
validation.

The software, which is open source and written in Python, features an intuitive command
line interface, and is thoroughly documented on its GitHub repository (https://github.com/
PedroBarbosa/VETA). VETA is stored in the Python Package Index (PyPI), and also accessible
via a pre-built Docker image (https://hub.docker.com/r/pbarbosa/veta).

4.4 ClinVar variants located beyond 10 bp from the splice sites
are poorly predicted

Having introduced VETA, we now present the results of the benchmark. First, we
employed a bin-based analysis to evaluate ClinVar data (full dataset is available at
https://s3.ap-northeast-1.wasabisys.com/gigadb-datasets/live/pub/10.5524/102001_
103000/102423/supplementary_tables/table_S1_clinvar_data.tsv). We evaluated
performance using a variation of the F1 score called the weighted F1 score. This metric
considers missing predictions during evaluation (refer to Appendix A.3 for details on the
metrics used). Because ClinVar contains disease-causing variants that act through different
molecular mechanisms, we included not only splicing-related tools but also conservation scores
and whole genome predictors in the evaluations. Some of the models were trained using ClinVar
data (Table 4.1), potentially leading to a circularity type I problem [191]. Fully correcting for
this issue would have signified removing all ClinVar variants that were used in the training
of any of the tools. This would have been problematic, as we would have lost many valuable
deep intronic variants, which are typically scarce. However, most of the tools that were trained
with ClinVar variants performed poorly. CAPICE was the only one to achieve a weighted F1
score above 0.6 across all bins (Figure A.1A). We therefore only removed ClinVar variants that
were used for training CAPICE (N=14,189: 5,205 pathogenic and 8,984 benign). This is a
trade-off, allowing for over-estimated performance for some of the more underperforming tools
while ensuring a sufficiently large dataset for the evaluation of all tools. After this filtering
step, 53,600 variants remained for evaluation. As expected, the distribution of the two variant
classes (pathogenic and benign) across bins is highly unbalanced (Figure 4.2A). More than 90%
of the intronic pathogenic variants occur at splice site positions, and more than 95% occur
within 10 nucleotides from an exon-intron boundary.

Due to the spatial limitations discussed previously, we expected that some splicing tools
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would only output predictions for ClinVar variants located close to splice sites. Our results
confirmed that several methods make predictions for less than 50% of the variants located at
a distance of more than 40 bp from the nearest splice junction (Figure 4.2B). The fraction
of predicted variants decreases according to the expected regions that each model covers:
50bp for S-CAP and MLCsplice, and 300bp for SPIDEX. MLCsplice was designed to predict
non-canonical splicing variants (i.e. excluding splice site variants), thus, it is the only tool
that displays no predictions at 1-2 positions (Figure 4.2B). In addition, we observed that the
tools ran using the Kipoi framework (KipoiSplice4, HAL, MMSplice) displayed a notable drop
41-200 bp from the splice site. On the other hand, SQUIRLS [183], Pangolin, CI-SpliceAI,
SPiP, TraP [182], SpliceAI, ConSpliceML and AbSplice-DNA predicted across entire introns
(Figure 4.2B). Regarding the remaining tool categories, we observed that both whole genome
predictors and conservation scores (except phastCons [166]) output predictions for most ClinVar
variants (Figure 4.2B).

Next, we evaluated how the tools that score across full introns perform with ClinVar data.
Performance dropped considerably for variants located deeper in intronic regions, especially once
a distance of 10 nucleotides from the splice site had been reached (Figure 4.2C). The splicing
tools with the smallest and largest performance decrease between the splice site bin (“1-2”)
and the “11-40” bin were Pangolin and TraP, with weighted F1 scores decreasing by 0.303 and
0.757, respectively (Figure 4.2C). Conservation scores and whole-genome predictors performed
poorly as well. Except for CAPICE and CADD-Splice, most methods displayed weighted F1
scores below 0.15 at the 11-40 bin. Overall, the most performant tools were CI-SpliceAI,
Pangolin and SpliceAI with average weighted F1 scores across all intronic bins of 0.672, 0.661
and 0.627, respectively (Figure 4.2C). A table with all metrics for each tool and bin can be
found at https://s3.ap-northeast-1.wasabisys.com/gigadb-datasets/live/pub/10.5524/
102001_103000/102423/supplementary_tables/table_S2_clinvar_data_results.tsv.

Strikingly, we noticed an increase in performance in the deepest intronic bins when compared
to intermediate distances (Figure 4.2C). We hypothesized that variability in transcript structures
could be the reason: despite these variants being assigned as occurring very deep within introns
(> 500bp from the splice site) according to the associated RefSeq transcript, they may be exonic
or near-splice site variants in other isoforms of the associated gene. To tackle this question, we
looked at the raw transcript annotations (without picking ensembl VEP consequences) of the
variants assigned to the > 500bp bin (N=1501) and decomposed them into several sub-categories
based on their localization in different transcript isoforms (see methods details in Appendix A.4).
Our analysis revealed that 304 variants are located in exons in other transcripts and 274 variants
mapped to introns but closer to splice sites than in the transcript isoform originally considered
(Figure A.1B). In particular, some of the intronic variants are located at splice sites in other
transcripts (Figure A.1C). We found that the performance of the tools was generally better
for these categories than for categories where the variant distance to the splice site remained
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Figure 4.2: Intronic variant prediction in ClinVar. A - Distribution of variants across each intronic bin
considering the RefSeq transcript associated with each ClinVar variant. B - Fraction of variants scored (with
predictions) at each intronic bin. Mean values in the legend represent the average fraction of variants scored
across all bins. C - Performance of tools that predict entire introns (defined as > 90% scored variants) at each
intronic bin. Mean values in the legend represent the average weighted F1 score across all bins. D - Differences in
performance per deep intronic bins (“501-1000” and “1000+”) after removing variants that are exonic or closer to
splice sites in other transcripts of the associated gene. Points refer to the weighted F1 difference between this new
analysis minus the values obtained originally (displayed in C). Annotations next to points refer to the weighted
F1 scores in the new analysis for the tools whose performance difference is positive.

unchanged (Figure A.1D), which is consistent with the hypothesis that deep intronic pathogenic
variants are hard to predict. After excluding variants from exonic and closer-to-splice sites
categories, we repeated the per-bin analysis to see whether the performance increase in the
deepest bins remained. We observed that most conservation-based methods and whole genome
predictors displayed a decline in performance compared to the original analysis (Figure 4.2D).
On the other hand, a subset of splicing tools such as ConSpliceML, SpliceAI, Pangolin or
CI-SpliceAI showed better performance than before, suggesting that unequivocal deep intronic
variants in ClinVar are associated with splicing and that SpliceAI-based methods can identify
them reasonably well.
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4.5 Pathogenic splicing-affecting variants are captured well by
deep learning based methods

Not all ClinVar intronic variants are associated with splicing defects. However,
splicing-related tools were the most successful at predicting the pathogenicity of deep
intronic mutations. Therefore, we decided to narrow our focus to variants that specifically
affected splicing. Our lab previously published a dataset of deep intronic variants
causing human disease via disruption of splicing (N=81) [59]. In the current study,
we augmented the dataset by performing a comprehensive literature search for case
reports published after 2017, where the association between a variant and a splicing
defect was supported by experimental evidence, such as from RT-PCR, sequencing
of cDNA products, RNA-Seq or minigene/midigene assays (full dataset available at
https://s3.ap-northeast-1.wasabisys.com/gigadb-datasets/live/pub/10.5524/102001_
103000/102423/supplementary_tables/table_S3_splicing_pathogenic_curation.tsv).
This new curation effort is composed of 161 variants covering a diverse range of disease
phenotypes, with most diseases represented by fewer than 3 variants (Figure A.2A). A great
number of these variants are not yet reported in ClinVar (N=90), and of those that are
reported, a few (N=11) are incorrectly classified as VUS, with review status ranging from 0-1
stars (Figure A.2B). As further evidence of their pathogenicity, the variants are very rare in
the general population, as most of them are absent from gnomAD [12], a widely used catalog
of genetic variation across human populations (Figure A.2C).

The results showed that SpliceAI-derived methods outperformed the remaining tools.
PDIVAS displayed the highest area under the ROC (auROC), followed by Pangolin,
ConSpliceML and SpliceAI (Figure 4.3A). However, evaluation using single thresholds revealed
lower performance than using auROC, which is based on multiple thresholds (Figure A.2D). As
practical clinical applications usually require a binary decision, this prompted us to optimize
reference thresholds for detecting splice-affecting pathogenic intronic variation outside of the
canonical splice site regions (see VETA threshold recalibration). After recalibration, we
reveal SpliceAI and Pangolin as the best tools (weighted normalized MCC > 0.92) to identify
pathogenic variants using a single cutoff value (Figure 4.3B). As a practical outcome of this
analysis, we provide recalibrated thresholds for different trade-offs between precision and recall
(Table A.1).

4.5.1 Pseudoexon activation vs Partial intron retention

When available, we recorded information on the molecular consequences of each variant on
splicing. Pseudoexon activation was the most frequent consequence of deep intronic variants (194
out of 242 in our dataset). We also identified 37 variants leading to partial intron retention due
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Figure 4.3: Pathogenic variant prediction of deep intronic variants affecting RNA splicing (81 variants from
Vaz-Drago et al. [59] and 161 curated for this study). A - Receiving Operating Characteristic (ROC) analysis
for all splicing-associated methods. B - Performance using optimized thresholds for intronic variation outside
of canonical splice regions. The weighted normalized MCC was used to rank the tools. C - Performance using
optimized thresholds on two different subsets of variants: variants leading to partial intron retention and variants
leading to pseudoexon activation. PDIVAS and AbSplice-DNA were excluded as they do not score the two groups
equally (PDIVAS only predicts variants located 50bp beyond the nearest splice site, while AbSplice-DNA scores
variants within 100bp of any splice junction observed in GTEx data). Wilcoxon Signed Rank test, performed as
a one-sided test, was used to compare the values between the two groups of variants.

to the usage of an alternative splice site. Exon skipping was observed in only 6 cases, consistent
with previous observations that functional deep intronic variants are less commonly linked to
this mechanism [192]. We next compared the tools’ ability to detect pseudoexon activation and
partial intron retention variants using the optimized thresholds. We hypothesized that the tools
would perform better on the partial intron retention group since these variants are located closer
to the splice sites than those that activate pseudoexons (Figure A.2E). Nonetheless, we observed
no statistically significant differences between the two groups, with SpliceAI-derived methods
performing slightly better in the pseudoexon activation group (Figure 4.3C).

4.6 Variable performance in variants associated with different
molecular mechanisms

To gain further insight into the molecular mechanisms driving the splicing alterations, we
generated datasets of alternative splicing events triggered by intronic variants occurring at
different regions that are important for splicing regulation (Table 4.2, full datasets available at
https://s3.ap-northeast-1.wasabisys.com/gigadb-datasets/live/pub/10.5524/102001_
103000/102423/supplementary_tables/table_S6_splicing_per_region_datasets.tsv).
We defined six categories (Figure 4.4, see Appendix A.1 for details). Within each region,
we separately evaluated variants that trigger partial intron retention (via alternative splice
site usage at annotated exons) and variants that lead to pseudoexon activation. Importantly,
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contrary to the analyses performed above, we evaluate performance not based on the ability
to distinguish between pathogenic and non-pathogenic variants but rather between variants
that do (positive class) or do not (negative class) affect the mechanistic splicing outcome.
This is relevant as a variant may, e.g., create a pseudoexon, thus affecting the outcome of
splicing, without necessarily leading to disease. This decision was made as information on
variant pathogenicity was not always available. We also switch to reporting performance using
the area under the PR curve (auPRC), which is a metric to summarize precision-recall curve
analysis. This decision was motivated by two factors. Firstly, some categories have unbalanced
data, with fewer positive instances compared to negatives. The auPRC score provides a more
nuanced evaluation of tool performance by focusing on the accurate identification of positive
instances. Furthermore, it eliminates the need for a single universal cutoff, accommodating the
fact that different categories may have distinct optimal thresholds.

Figure 4.4: Schematic representation of the regions used to define each dataset. The figure displays the
expected wildtype (WT) structure and the abnormal structure caused by the variant (Mut) for each of the two
major groups: pseudoexon activation and partial intron retention. The red blocks indicate regions of the mRNA
that are incorrectly spliced. Exceptionally, some branchpoint-associated variants result in exon skipping, which
is not graphically represented in the figure.

4.6.1 Branchpoint associated variants

Branchpoint associated variants were defined as located 18 to 44 bp upstream of the splice
acceptor of a cryptic or canonical splice site, either leading to pseudoexon activation, partial/full
intron retention, or exon skipping. In addition, we confirmed that the variant either disrupted
or created any of the four (increasingly relaxed) BP motifs described in [131]: YTNAY, YTNA,
TNA, YNA. Particularly, we excluded any splicing-altering variants located 1 bp upstream of the
branchpoint adenine. The final positive branchpoint-associated dataset (N=82) spans 7 different
sources, with Leman et al. [151] contributing the most (N=31, Table 4.2). The negative variants
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Table 4.2: Sources of data used to build region-specific splicing datasets.

Study Variants* Per category** Description

Splicing-altering

Vaz-Drago et al. [59] 81 AU=3;NSA=12;EL=10;
NSD=39;DD=17

Manual curation of disease-causing deep intronic variants
with experimental validations

Our curation 140 BP=7;AU=11;NSA=26;
EL=19;NSD=43;DD=34

Manual curation of disease-causing deep intronic variants
with experimental validations

Keegan et al. [60] 143 BP=1;AU=12;NSA=21;
EL=13;NSD=71;DD=25

Characterization of hundreds of mutation events driving
cryptic splicing via pseudoexon activation

Petersen et al. [193] 10 BP=1;AU=1;EL=7
;DD=1

Characterization of pseudoexons activated by deep intronic
mutations that do not create or strengthen cryptic splice
sites

Tubeuf et al. [152] 3 EL=3 Benchmark of user-friendly tools for predicting variants
affecting splicing regulatory elements

Jung et al. [192] 231 BP=25;AU=42;NSA=3;
EL=56;NSD=37;DD=68

Identification of intronic mis-splicing mutations from
RNA-Seq using a read ratios approach

Moles-Fernández et al.
[153] 15 BP=1;AU=2;NSA=2;

EL=2;NSD=7;DD=1
Benchmark of using both SpliceAI and user-friendly tools
to identify deep intronic variants that disrupt splicing

Leman et al. [151] 31 BP=31 Benchmark of bioinformatics tools to predict BP as well as
the impact of splicing variants occurring in the BP area

Zhang et al. [131] 16 BP=16 Genome-wide analysis of human branchpoints and
development of a tool to score BP-associated variants

Splicing-neutral

Moles-Fernández et al.
[153] 98 BP=2;AU=35;DD=61 Benchmark of using both SpliceAI and user-friendly tools

to identify deep intronic variants that disrupt splicing

Vex-seq [194] 277*** BP=59;AU=52,
EL=119;DD=47

Vex-seq, a MPRA to test the impact of 2059 variants in
splicing across 110 alternative exons

MFASS [195] 109 BP=34; AU=17; DD=58 Multiplexed functional assay (MFASS) that assayed the
splicing effect of 27,733 ExAC variants

gnomAD [12] 261 NSA=64; NSD=197 Common (and hypothetically benign) variants that create
true splice site motifs

* Total number of variants used from original study. Since several variants were duplicated across studies, we kept unique
occurrences given the order they appear in the table (top to bottom).
** Number of variants contributing to each category. BP = Branchpoint-associated; NSA = New splice acceptor; NSD = New
splice donor; AU = Acceptor upstream; DD = Donor downstream; EL = Exonic-like. Note: we could not assign a category to all
variants of our curation, hence the lower number as compared to the original dataset (N=161).
*** Exceptionally, 119 variants from this study are exonic.

are located 18 to 44 bp upstream of an annotated splice site and had been shown not to affect
splicing using the minigene-based reporter assays Vex-seq [194] and MFASS [195](Table 4.2).
Because BP variants activating pseudoexons were scarce (N=4) and the molecular consequences
of BP-associated variants are not clear-cut (e.g., the same BP variant may lead to intron
retention and to exon skipping), we analyzed all the variants affecting the BP motif together. For
this analysis, we additionally included four branchpoint prediction tools: SVM-BPFinder [129],
BPP [130], LaBranchoR [132] and BPHunter [131]. Moreover, we included IntSplice2 [185] since
it predicts splicing-associated SNVs at intronic positions overlapping the branchpoint region.

Pangolin was the best-performing method for BP-associated variant prediction with an
impressive auPRC score of 0.93 (Figure 4.5, Figure A.3A). This result suggests that the training
of Pangolin on multi-species data potentially contributed to increased robustness in capturing
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the complexity of the branchpoint code. Among the tools specifically designed to predict BPs,
LabRanchoR and BPHunter were very competent, ranking 2nd and 4th, respectively, with
auPRC scores of 0.877 and 0.87. Conversely, BPP and SVM-BPFinder displayed more modest
results.

Figure 4.5: Global overview of the performance (quantified with auPRC) for all the datasets analyzed.

4.6.2 Acceptor Upstream and New Splice Acceptor variants

The Acceptor Upstream category refers to splicing-altering variants that mostly locate upstream
(up to 18bp) of an existing cryptic splice acceptor and activate it. On the other hand,
the New Splice Acceptor category contains variants that form new splice sites themselves
(Figure 4.4). We collected negative variants differently for each of the two categories. For
Acceptor Upstream variants, we extracted variants located upstream of annotated splicing
acceptors that did not interfere with the splicing outcome, as demonstrated through MFASS,
Vex-seq or Moles-Fernández et al. [153]. The BP region from 18 to 44 bp was excluded.
Conversely, we assigned common (>5% allele frequency) deep intronic gnomAD variants that
create new splice acceptor motifs as negative New Splice Acceptor variants (Table 4.2, see
details in Appendix A.1). Despite creating a splice acceptor motif, these variants are considered
non-functional due to their high prevalence in the general population. While it is theoretically
possible that these variants do affect splicing (e.g, if they occur in non-essential genes where
splicing alterations have little fitness effect), we confirmed that their genomic locations were not
used as splice junctions in individuals from the GTEx [127] cohort.
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The sets of splicing-altering variants we collected for each category were similar in size (71
and 64 variants for acceptor-upstream and new splice acceptor, respectively). However, when
we split the variants according to the major molecular group (pseudoexon inclusion vs. partial
intron retention), we obtained a very small number of new splice acceptor variants in the partial
intron retention group (N=13), hence rendering their computational evaluation statistically
limited. Therefore, for this particular analysis, we merged Acceptor upstream and New Splice
Acceptor variants into a new Acceptor associated class so that we could have a reasonably large
dataset to evaluate. As for the Branchpoint associated variants, we added IntSplice2 to the
list of tools to evaluate. In addition, we included two splice site prediction methods that we
customized to predict variant effects in VCF format: SpliceRover [123] and Spliceator [124].

SpliceAI, PDIVAS, Pangolin, ConSpliceML and CI-SpliceAI achieved good performance on
pseudoexon-activating variants, with auPRC above 0.9 (Figure 4.5). However, when it comes to
variants causing partial intron retention, performance drops considerably, with no tool achieving
an auPRC score higher than 0.85 (Figure 4.5). Except for PDIVAS, which had a substantial
amount of missing data for this analysis, the top tools remained unchanged, with Pangolin,
SpliceAI and CI-SpliceAI displaying auPRC scores of 0.847, 0.816 and 0.765, respectively
(Figure A.3C). Among the tools specifically added for this analysis, SpliceRover was the most
competitive, ranking 6th in the pseudoexon group and 5th for partial intron retention variants
(Figure A.3B,C).

4.6.3 Exonic-like variants

We consider here intronic variants that lie within either an activated pseudoexon or within
an annotated exon that undergoes alternative splice site usage (Figure 4.4). We identified
110 splicing-altering variants to compare against 119 splicing-neutral exonic variants from
Vex-seq (Table 4.2). After grouping the variants according to the major group, we obtained 78
pseudoexon-activating variants vs. 32 variants triggering partial intron retention. Accordingly,
we randomly split the negative the variants between the two groups so that the final datasets
were fairly balanced (84 and 35 variants for each group, respectively). For this comparison,
we also included three approaches that quantify splicing regulatory elements that enhance or
repress flanking splice sites: ESRseq scores [118], HEXplorer [164] and ESEfinder [163].

Once again, we observed better overall performance for the pseudoexon group compared to
the partial intron retention group (Figure 4.5, Figure A.3D, E). Pangolin and SpliceAI were
among the best tools in both major groups. Interestingly, HEXplorer and ESRseq performed
better for the pseudoexon group than models that incorporate deep learning based predictions
such as AbSplice-DNA or ConSpliceML (Figure A.3D).

Although SpliceAI performed best comparing to other methods, its pre-computed scores were
configured to only report variant effects in a 50-bp window from the variant site. While this
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window is fine for most variant types (the affected splice sites are usually close to the variant
site), that may not be the case for pseudoexon-activating variants that could be located deep
inside the pseudoexon (assuming a pseudoexon of the size of an annotated exon). Therefore, we
selected the splicing-altering variants missed by SpliceAI using the optimized threshold of 0.05
(N=25) and used the SpliceAI Lookup API (https://spliceailookup.broadinstitute.org/,
last accessed May 25th, 2023), to run the model using a larger maximum distance (500 bp). We
observed that 9 out of 25 were correctly reclassified as splicing-altering, suggesting that SpliceAI
performance may be underestimated when ignoring longer-range variant effects.

4.6.4 New Splice Donor variants

We identified 197 positive variants falling into this category (Table 4.2). For the negative set, we
used variants that created a GT dinucleotide resulting in a splice donor consensus (GGTAAG),
but that were unlikely to act as a cryptic splice site as they appeared in gnomAD with a
population frequency >5% and were not observed to be used as a splice junction in GTEx
individuals. We added SpliceRover, DSSP and Spliceator tools to the evaluation.

PDIVAS demonstrated the best performance in the pseudoexon activation group, achieving
an auPRC score of 0.981. On the other hand, AbSplice-DNA outperformed other tools for
partial intron retention variants with a performance metric of 0.94 (Figure 4.5, Figure A.3F,
G). Similarly, SpliceAI, ConSpliceML, Pangolin and CI-SpliceAI exhibited excellent results,
indicating that these models are very well-suited for predicting this category of variants.
Importantly, we noticed a large performance gap between SpliceAI-related tools (plus SPiP)
and the rest, which performed rather poorly (almost all tools with auPRC scores below 0.6,
Figure 4.5). Considering that splicing-negative variants in this dataset create hypothetical
splice donor decoys, we wondered whether tools that incorporate cryptic splice site scoring
features using short sequence windows surrounding the variant site (Position Specific Scoring
Matrix (PSSM)-based for TraP, information content-based for SQUIRLS) would predict negative
variants as splicing-altering. Indeed, we observed a large proportion of false positives for
these tools in the pseudoexon-activation group when using a single reference threshold for
evaluation (1.0 for TraP and 0.98 for SQUIRLS). Conversely, deep learning based methods
such as SpliceRover, DSSP and Spliceator may rely too much on the near-splice site features
(despite using larger sequence contexts), hence the poor performance observed.

4.6.5 Donor Downstream variants

This category refers to all splicing-altering intronic variants located downstream of the cryptic
splice donor event (N=146). Negative variants (N=166) are located downstream of annotated
exons and were shown experimentally to have no impact on splicing outcomes (Table 4.2). As
before, we included SpliceRover and Spliceator in the analysis. DSSP was excluded since it
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Figure 4.6: auPRC scores for the tools capable of predicting entire introns.

predicts splice sites at fixed positions in the input, but in this category, variant positions with
respect to the cryptic splice donor are variable.

PDIVAS and SpliceAI excelled on the subset of variants triggering pseudoexon activation
with auPRC scores of 0.969 and 0.959, followed by ConSpliceML, Pangolin and CI-SpliceAI,
all with performance values above 0.9 (Figure 4.5, Figure A.3H). Regarding the partial intron
retention subset, Pangolin and SpliceAI performed the best (auPRC scores of 0.89 and 0.879),
with a larger difference for the tool ranked third, CI-SpliceAI (auPRC=0.836, Figure A.3I).
Again, these results demonstrate the superiority of SpliceAI-derived approaches versus standard
methods that engineer domain-specific features to score intronic splicing variation.

4.6.6 All regions combined

Next, we combined all the datasets to inspect the global performance of each major variant
group. Eight methods were able to score all types of splicing variants in any intronic region.
These tools were SpliceAI, Pangolin, ConSpliceML, CI- SpliceAI, AbSplice-DNA, SPiP, TraP,
and SQUIRLS (Figure 4.6). Except for AbSplice-DNA, which scores intronic variants located
up to 100bp away from splice junctions used in any GTEx tissue, all the methods were designed
to score any given position in introns.

SpliceAI and Pangolin consistently ranked highly for all datasets (Figure 4.6). CI-SpliceAI,
AbSplice-DNA and ConSpliceML were fair alternatives, especially for variants that create new
splice donors. SPiP was particularly inadequate for exonic-like variants, but was the best
non-deep learning-based method for the remaining categories (Figure 4.6).

Overall, we observed a trend of pseudoexon-activating variants being predicted
more accurately than partial intron retention variants (Figure 4.6, Figure A.4A).
However, when evaluating each tool individually, this trend did not reach statistical
significance for the majority of them (Figure A.4B). A table with all performance
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metrics for each tool and dataset analyzed in this section can be found at https:
//s3.ap-northeast-1.wasabisys.com/gigadb-datasets/live/pub/10.5524/102001_103000/
102423/supplementary_tables/table_S7_splicing_per_region_datasets_results.tsv.

4.7 Assessing interpretability

We were interested in the extent to which these state-of-the-art tools give additional information
to the user, besides the prediction. Among the tools that predict across whole introns, SQUIRLS
and SPiP are the only ones intentionally designed to provide some interpretation of the outcome.
SQUIRLS can generate HTML reports with short descriptions of why the model predicts
pathogenicity and displays the contribution of each feature to the outcome. In addition,
it draws figures to show the variant effect in the sequence context surrounding the variant.
SPiP provides short interpretation tags describing the molecular consequences of the variants
along with confidence intervals for the probability that the variant impacts splicing. Recently,
a novel strategy was introduced to aid in the interpretation of splicing-associated variants,
leveraging RNA-Seq data from more than 300,000 individuals [196]. This approach, SpliceVault,
focuses on quantifying the relative prevalence of stochastic and unannotated splicing events in
population-based RNA-seq data, enabling the prediction of the nature of mis-splicing induced
by a variant. Given its innovative approach and the ability to provide interpretations for variant
consequences, we included SpliceVault in our assessment.

We devised a procedure to evaluate how accurate the interpretations are against the
biological ground truth (see details in Appendix A.5). We used the splicing-associated
deep intronic pathogenic dataset analyzed before (Figure 4.3) and specifically selected
variants with complete annotations, including molecular effect and functional consequence
(N=221) for assessing interpretation quality. SPiP and SQUIRLS correctly predicted
170 and 121 variants, respectively, and those were selected for downstream analysis. In
contrast, SpliceVault does not predict variant effects directly. Instead, it checks the
mis-splicing occurring in the surroundings of an annotated exon of interest. As a result,
we did not include pseudoexon-activating variants because SpliceVault cannot provide
information about such an outcome (despite potentially identifying one of the two splice
junctions of the pseudoexon). This left us with 37 variants for analysis (available at
https://s3.ap-northeast-1.wasabisys.com/gigadb-datasets/live/pub/10.5524/102001_
103000/102423/supplementary_tables/table_S9_SpliceVault_presults.tsv). Our
evaluation revealed that SQUIRLS, SPiP, and SpliceVault were able to provide correct
interpretations (within the limitations of each approach) for a considerable fraction of the
variants. However, for many others, no interpretation could be found. Specifically, SPiP
lacked interpretations for 46 variants, SpliceVault for 22 variants, and SQUIRLS for 21 variants
(Figure 4.7A). In the case of SpliceVault, this accounted for more than half of the analyzed
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Figure 4.7: Tool’s interpretability assessment. A - Assessing the quality of the interpretations for SQUIRLS,
SPiP and SpliceVault. Within each bar, the height of each category represents the fraction of variants assigned
to the given interpretation quality tag. The numbers above the bars indicate how many pathogenic variants were
used. B - Distribution of SPiP and SQUIRLS prediction values for each of the interpretation categories.

variants (22 out of 37). Further inspection of these results showed that most of these variants
create a core splice site dinucleotide, and this type of mis-splicing event is not appropriate
to be captured by SpliceVault. Regarding SQUIRLS and SPiP, and looking at the prediction
score distribution for each category, we observed that the variants with no interpretation have
the lowest scores (Figure 4.7B). On the other hand, correct explanations are spread across
the full score range. Interestingly, SPiP explanations that are not informative (events with no
association with any splicing mechanism) have the highest median score range, showing that
strong effects are not necessarily easier to explain.

4.8 Predicting splicing changes across tissues

Of the tools evaluated in this study, Pangolin and AbSplice-DNA can both predict splicing
outcomes in a tissue-specific fashion. We decided to use AbSplice-DNA alone for this analysis.
Pangolin was trained on sequences and splice site usage levels from four tissues across four
species (human, rhesus macaque, mouse and rat). However, the default settings of Pangolin
are tissue-agnostic and it requires additional customizations to get tissue-specific variant
effect predictions. On the other hand, AbSplice-DNA provides pre-computed tissue-specific
predictions. Moreover, it combines tissue-specific splicing annotations created from GTEx data
with DNA-based prediction models, enabling it to predict variant effects in more tissues (49). We
aimed to evaluate whether AbSplice-DNA predictions of disease-causing variants are enriched
for the tissues that are most strongly affected by the disease.

Using the splicing-associated variant dataset described above (N=242, Figure 4.3), we
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determined, when possible, the GTEx tissue most closely associated with the given disease
based on the Human Phenotype Ontology (HPO) [197] (see Appendix A.6 for details). We
selected the 155 variants that AbSplice-DNA predicted correctly (see full dataset at https:
//s3.ap-northeast-1.wasabisys.com/gigadb-datasets/live/pub/10.5524/102001_103000/
102423/supplementary_tables/table_S10_AbSplice_DNA_tissue_assignments.tsv), which
excluded all the variants causing two of the most common diseases in our dataset: Becker
muscular dystrophy and Duchenne muscular dystrophy. In addition, 35 variants were not
evaluated since they were not assigned to any particular tissue (e.g. systemic diseases, or
diseases affecting tissues not represented in GTEx, such as the retina), leaving 120 variants
to analyze. Considering disease variants associated with only one GTEx tissue, we observed
enrichment of the expected tissues to a limited extent (Figure 4.8, Figure A.5A). For example,
Hypertrophic Cardiomyopathy variants were highly enriched in the heart tissue, an Ataxia
with Oculimotor Apraxia variant was predicted to affect the cerebellum and a Congenital
hypothyroidism variant was enriched for thyroid. Interestingly, variants associated with blood
disorders (Factor VII deficiency and Afibrinogenemia) have the highest prediction scores in
the liver, which is not surprising, since the liver plays a crucial role in the production of
clotting factors, including factor VII and fibrinogen (Figure 4.8). However, other tissue-specific
predictions had unclear interpretations, such as the enrichment of testis for several diseases, the
brain cerebellum in Adenomatous Polyposis (associated with colon and rectum, Figure 4.8B),
or the skeletal muscle in Fabry disease (primarily linked to other tissues such as heart and
kidneys, Figure A.5A). In addition, 40 variants displayed the same score across all tissues,
which does not reflect the expected biology, especially for some diseases associated with a single
tissue (Figure A.5B).

4.9 Discussion

We used two different datasets to study intronic variants causing human disease. ClinVar is a
database that has been widely used for this purpose. Nevertheless, to the best of our knowledge,
it has not been used to evaluate performance as a function of distance to the splice sites.
Averaging performance across all bins, we found that splicing-associated tools performed the best
overall on ClinVar data. Importantly, we observed a decrease in performance immediately after
the two splice site positions, with a particularly noticeable decline at a distance of 11 base pairs
from the closest splice site. These results demonstrate the extent to which these methods are
biased to predict splice site variants, whereas smaller effect-size variants deeper inside the intron
go mostly unnoticed. For many of the tools, such as S-CAP or MLCsplice, this is not unexpected,
as they were not designed to predict variants in deep intronic regions. In addition, we observed
that some of the variants that appear deep-intronic in the clinically-relevant transcript are
exonic or located close to the splice sites in other isoforms of the associated gene. Therefore,
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Figure 4.8: Tissue-specific predictions made by AbSplice-DNA for a set of disease-causing variants associated
with a single tissue, according to HPO. Phenotype names are displayed in rows, GTEx tissues predicted by
AbSplice-DNA are in columns. High z-scores represent tissues for which the variant effect is stronger compared
to other tissues.

and according to the American College of Medical Genetics and Genomics and the Association
for Molecular Pathology (ACMG-AMP) guidelines [198], we recommend considering multiple
isoforms when interpreting deep intronic variants, especially when the canonical isoform is not
highly expressed in the tissue of interest [199].

Additionally, we curated a diverse set of pathogenic deep intronic mutations that exclusively
affect splicing. Tools that predict across all intronic regions, notably SpliceAI-derived models,
showed satisfactory performance. Many variants in this dataset generate new splice sites deep
within introns, activating pseudoexons. We speculate that sequence-based models that predict
splice sites are particularly well suited to predicting this class of variants, likely because the
pseudoexons resemble the sequence context of authentic exons [193] that were presented during
their training.
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To better understand performance differences between classes of variants, we collected a
diverse set of experimentally tested splicing-associated variants, and evaluated the tools’ ability
to distinguish them from similar non-splice-altering variants. Region-specific analysis revealed
substantial differences in performance. In agreement with previous studies [153, 200], we found
that variants affecting putative exonic splicing regulatory elements were among the hardest to
predict. The binding motifs of many splicing factors are highly degenerate or even unknown,
and their impact on splicing largely depends on the cell type [201, 202]. Nevertheless, such
complexity appears to be better captured by SpliceAI and Pangolin than by tools with built-in
domain knowledge.

The recent progress achieved through deep learning models that work as black boxes
has raised concerns about their deployment in sensitive domains such as healthcare [203].
Because practitioners are interested in understanding how these AI systems make decisions,
we assessed the capacity of these models to provide interpretable outputs when predicting
disease-causing variation associated with splicing defects. Although most sequence-based
models, such as SpliceAI, provide some information beyond the prediction score, namely the
distance of the variant to the affected mRNA position, it is only possible to obtain insight
into the inner workings of the model by applying external explainability techniques [30]. On
the other hand, SQUIRLS and SPiP are intrinsically more interpretable by design. The
models were frequently able to correctly identify the type of splicing alteration. However,
these models suffer from an accuracy-interpretability trade-off since the performance across
evaluations was lower than that of black box models. The recently published SpiceVault portal
(https://kidsneuro.shinyapps.io/splicevault) also provides an accurate interpretation of
the nature of mis-splicing defects, however, it does have limitations that are specially pronounced
when dealing with variants deep in the introns. In particular, it cannot properly analyze
pseudoexon activation events or cryptic splicing caused by variants that create new splice sites
at the core dinucleotide motif. Note that to our knowledge, no tool exists that can provide
higher-order mechanistic interpretations, such as identifying the particular splicing factors or
regulatory motifs involved.

Another promising research avenue is the prediction of splicing abnormalities in a tissue of
interest, which AbSplice-DNA offers. The model could accurately detect some tissue-specific
differences relevant to human disease, yet it was unreliable for the majority of variants.
Nonetheless, we acknowledge that the introduction of SpliceMaps [142], which provides
information on splice site usage across GTEx tissues, combined with RNA-Sequencing of
clinically accessible tissues (CATs), is expected to enhance the prediction of functional intronic
variants [142], particularly in diseases where the splicing landscape of the relevant non-accessible
tissue is appropriately represented by one of the CATs [204].
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4.9.1 Practical recommendations

We advocate using deep learning based solutions to obtain maximally accurate predictions.
SpliceAI and Pangolin consistently ranked high for intronic variants associated with splicing,
both for the prediction of pathogenicity and of altered splicing. We determined optimal
thresholds for deep intronic regions (SpliceAI=0.05, Pangolin=0.053) for clinical purposes.
However, it is important to note that despite the diversity of genes, phenotypes and molecular
mechanisms covered in our dataset, users should be mindful that optimal thresholds can vary
depending on the variant class or affected exon [205].

SpliceAI and Pangolin are usually run programmatically on the command line. However,
if usability is a primary concern and users have a limited number of predictions to make,
the Broad Institute offers a convenient web application. The web application (https:
//spliceailookup.broadinstitute.org/) incorporates both SpliceAI and Pangolin. For
SpliceAI, it not only provides the conventional delta score (mutated - reference) but also presents
the raw splice site probability predicted by the model. This can be particularly useful for certain
situations. For instance, when a splice site is already predicted with a high score in the reference
sequence (e.g., 0.85), the delta score for a splice-promoting mutation can only be low (no more
than 0.15, in this example). This is because SpliceAI scores are capped at 1. This context is
important for the correct interpretation of the delta scores. With this in mind, it is also worth
considering SpliceAI-visual [206], available at https://mobidetails.iurc.montp.inserm.fr/MD.
SpliceAI-visual handles complex variant types, and employs raw SpliceAI scores to generate
graphical outputs that are easier to interpret. If the number of variants makes it unfeasible
to use these web applications, but the user does not have the computational know-how to
work on the command line, CI-SpliceAI is a good alternative, since its online service (https:
//ci-spliceai.com/) allows the input of multiple variants in a VCF-like format. Practitioners,
however, may suspect that splicing is not the mechanism disrupted by a particular mutation.
In this scenario, we recommend using CAPICE since it was the best whole genome predictor on
ClinVar data, although with very limited performance.

Region-specific splicing benchmarks revealed additional insights for tool usage. We
recommend using Pangolin to prioritize variants in branchpoint regions (-18 to -44 bp upstream
of splice acceptor). LabRanchoR and BPHunter were the best branchpoint-specific tools in
our evaluation and can also be considered. SpliceAI and Pangolin were the most effective at
scoring acceptor-associated variants (splice acceptor creating or polypyrimidine tract variants
upstream of cryptic splice acceptors). Including other sequence-based deep learning models
that use smaller sequence contexts did not provide additional value. Intronic variants affecting
splicing regulatory elements within cryptic exons are hard to predict. We endorse using
SpliceAI with larger windows surrounding the variant site (setting the distance parameter to
the maximum). In addition, classical approaches such as HEXplorer might come in handy for
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specific cases, such as assessing the potential impact of a variant on exon-defining regulatory
motifs. Finally, SpliceAI-inspired models (Pangolin, CI-SpliceAI) and models that incorporate
SpliceAI predictions as features (ConSpliceML, AbSplice-DNA, PDIVAS) can effectively predict
new splice donor and donor-downstream variants. However, to keep the number of different tools
to use to a minimum, we suggest using the original SpliceAI model.

Nonetheless, it is noteworthy to mention the impacts of using pre-computed scores as
the strategy for variant prioritization. The current version of SpliceAI pre-computed scores
(v1.3.1) does not include predictions for insertions and deletions larger than 1 and 4 nucleotides,
respectively. In addition, the limit of 50 base pairs as the distance around the variant site to
extract variant effects prevents SpliceAI from identifying other variant classes, such as exon
skipping, when the variant exerts its effects at more than 50 base pairs from the affected exon.

Finally, when interpretable outcomes are important the choice of the strategy may depend on
the use case. There is currently no option covering all possible mis-splicing scenarios, and each
method assesses interpretability differently. SpliceVault is a recently published web application
that is effective when interpreting intronic variants leading to exon (or multi-exon) skipping,
or partial intron retention through activation of pre-existing cryptic splice sites. Alternatively,
SQUIRLS can be applied, as the software is well-designed, thoroughly documented and generates
HTML reports that practitioners can intuitively inspect. Nonetheless, it does not handle
pseudoexon activation consequences (for that, SPiP is recommended). In addition, it should
not be solely relied upon as a prediction tool, as it is not as performant as other models.

4.9.2 Final remarks

We comprehensively assessed functional intronic variation occurring far from annotated splice
sites. As a result, we make available to the community region-specific datasets that can be used
to evaluate new models on variants whose molecular consequence is known. These datasets will
assist developers in identifying potential limitations of the model and highlighting variant types
that it is more prone to fail on. Additionally, we encourage developers to make their models
publicly available by sharing them on open-source platforms to facilitate their reuse [82, 207].

Sequence-based models based on Convolution Neural Networks architectures are still the
state-of-the-art approach for splicing variant prediction. However, artificial intelligence is rapidly
evolving, and we have seen the emergence of Transformer-based architectures being applied to
other variant effect prediction tasks, e.g., effects on gene expression [208] or on protein function
using large protein language models [209]. As a result, increasingly complex models are expected
to effectively tackle open questions in splicing regulation, such as better capturing the synergistic
effects of splicing regulatory elements. However, the community must be aware of the possible
implications these models bring, such as a lack of transparency and decreased ability to generate
mechanistic hypotheses.
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Chapter 5

Interpreting SpliceAI

In this chapter, we present a comprehensive set of experiments to inspect whether SpliceAI is
sensitive to known biological properties, particularly the binding motifs of known RBPs. Given
RBP’s influence in regulating alternative splicing (Section 2.1.1), assessing SpliceAI’s ability to
use their binding motifs as predictive features would establish the model as a valuable resource
for studying alternative splicing.

To achieve this, we first leveraged large-scale publicly available data to generate multiple
datasets relevant to the task. Next, we developed a modular pipeline to perform model ablations
at scale, enabling us to interrogate, explore, and visualize whether SpliceAI utilizes these motifs
as features in its predictions. We summarize the contributions of this chapter as follows:

• Generation of paired datasets to study alternative splicing regulation by individual RBPs.
DOI: https://zenodo.org/records/11193459

• Development of MutSplice, a pipeline to perform in silico sequence perturbations with the
aim of interpreting SpliceAI.

Code: https://github.com/PedroBarbosa/mutsplice
Reproducibility: https://github.com/PedroBarbosa/mutsplice/tree/main/
notebooks

5.1 Generation of RBP-specific datasets to study splicing
regulation

We took advantage of public RNA-Seq data from the ENCODE consortium [113] to identify
exons whose inclusion levels (PSI) change when an RBP known to regulate alternative splicing
is knocked down (Figure 5.1A). These exons, referred to as knockdown-sensitive exons, are more
likely to be directly or indirectly regulated by such RBPs, thus providing insights into their
regulatory mechanisms.
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5.1.1 Differential splicing analysis

We used ENCODE RNA-Seq data generated from Short Hairpin RNA (shRNA) knockdown
experiments targeting individual RBPs. For each RBP, there were two knockdown and two
control (samples with no RBP target) replicates. Because in the original paper [113] authors used
an older version of the human genome (hg19) along with old genome annotations (GENCODE
v19), we reanalyzed ENCODE data aligned to the hg38 genome build. We started from
RNA-Seq genome alignment files for RBPs associated with splicing regulation (according to
[113]). There were 72 knockdown experiments available for the HepG2 cell line, which were used
for downstream analysis (details on accession IDs in Table B.1).

A B

Figure 5.1: Splicing analysis of RNA-Seq involving the knockdown of individual RBPs. A - Illustrative
example of the knockdown of SRSF1, an RBP known to regulate alternative splicing. The knockdown of SRSF1
will affect the inclusion of exons that are directly or indirectly regulated by SRSF1 binding. The outcome of
the analysis is the identification of exons that are either sensitive or agnostic to the knockdown of SRSF1. B -
Percentage of all exons affected by at least one knockdown experiment (out of 72) shared by 1 or more experiments,
using two widely used dPSI filtering thresholds.

We employed rMATS v4.1.2 [108] on each RBP knockdown experiment to detect differentially
spliced events between the two knockdown replicates vs. the two control replicates. rMATS
was run with GENCODE annotations v44 [210], and specifically tweaked with --cstat 0.05.
Significant knockdown-sensitive events were identified with a |dPSI|> 0.1 using a False Discovery
Rate cutoff of 0.05. Non-changing events, assumed as knockdown-agnostic controls, were defined
as those exhibiting negligible |dPSI| variation (< 0.025). We performed further analytical
steps to ensure the high quality of the exon sets. First, we applied a read coverage filter by
retaining events where the median coverage across replicates per condition for the isoform with
more read counts was higher than 7. Then, we exclusively focused on exon skipping events
in protein-coding genes and filtered out unannotated exons (pseudoexons) and the first or last
exons of genes. In addition, we excluded duplicate exon-skipping events by picking the transcript
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Figure 5.2: Summary of differential splicing analysis for each RBP knockdown involved in splicing regulation.
Left: Number of events. Right: dPSI distribution. All downstream analysis were performed with RBP knockdown
experiments with more than 40 differentially spliced exons detected.

with the highest biological importance (based on the presence of transcript flags such as MANE
selected, CCDS, or APPRIS). Finally, we investigated whether the initial, somewhat arbitrary,
choice of a |dPSI| filter of 0.1 was appropriate for subsequent analyses, given that a threshold of
0.2 is also frequently used. Specifically, we assessed the number of exons displaying differential
splicing in multiple RBP knockdown experiments. Regardless of filter stringency, over 50% of
all differentially spliced exons were unique to a single RBP knockdown (Figure 5.1B). This high
specificity is desirable for interpretability analysis, as we pose that exons sensitive to a single
knockdown are easier to explain than those complex exons that are sensitive to multiple RBPs.
Consequently, given the similar specificity between filters, we retained all exons with |dPSI|
> 0.1 as it preserved more data. This decision yielded 15,235 events detected across all RBP
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knockdown experiments, covering 6,659 unique exons.
Unsurprisingly, the number of events detected per RBP knockdown experiment is highly

heterogeneous, with important splicing factors such as U2AF1, U2AF2 and SRSF1 yielding the
highest number of differentially spliced exons, with more than 1,000 events each (Figure 5.2,
left panel). The effect sizes of each RBP knockdown are mostly moderate, with very few events
displaying drastic changes in splicing (|dPSI| > 0.9, see Figure 5.2, right panel). The low number
of events observed in several RBPs can be attributed to both biological and technical reasons.
For instance, some RBPs have a more specific role in splicing regulation, hence affecting a smaller
number of exons [211]. In addition, the number of detected events is directly influenced by the
expression profile of the target RBP in the HepG2 cell line, as different cell types express RBPs at
different levels. If an RBP is expressed at low levels, its knockdown is expected to have minimal
effects on the cell. Moreover, it is worth acknowledging the importance of technical aspects of
gene knockdown experiments, as off-target effects of the designed short hairpin RNAs [212] and
their GC content [213] may influence the efficiency of the gene knockdown, and consequently
affect the bioinformatics analysis outcome.

5.1.2 Paired datasets’ generation

In addition to analyzing SpliceAI behavior using exons sensitive to RBP knockdowns
(Figure 5.2), we aimed to extract control sequences - exons unchanged upon RBP knockdown -
to pair with such knockdown-sensitive counterparts. To generate control pairs, we established a
procedure to ensure that the control exons are as similar as possible to the knockdown-sensitive
exons at gene architecture level. The rationale for this approach is grounded in the understanding
that gene architecture features, such as exon/intron length or GC content, can influence splicing
outcomes [214]. Therefore, we aimed to study whether SpliceAI uses features (sequence motifs)
reflecting RBP binding, while controlling for potential confounding effects of other types of
features. Our hypothesis posits that if SpliceAI has learned the biology grammar of RBP binding,
we would observe more motifs associated with the specific RBP influencing SpliceAI predictions
within the sequences of the knockdown group compared to their control pairs, regardless of gene
architecture features.

Initially, we built a transcript-aware genome cache by summarizing the length and GC
content of all exons (along with surrounding introns) in the human genome, based on GENCODE
v44 annotations. Then, for each of the 72 RBP knockdown experiments, we gathered the
knockdown-agnostic exons (|dPSI| < 0.025) and excluded those exhibiting alternative splicing
in any of the other 71 knockdown experiments. Various strategies were then tested to select
the closest control exon (Table 5.1), all of which involved assessing some sort of distance
between a knockdown exon and all available control exons, ultimately selecting the control
exon with the lowest distance. Thus, for each RBP knockdown experiment, we iterated over
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Table 5.1: Strategies tested to extract the control exon that minimizes the feature vector distance the most to
the target knockdown-sensitive exon.

Strategy tag Features used 1 Are features
scaled? 3

Metric Median CV
accuracy

euclidean_l GC and Length 2 Yes Euclidean distance 0.501
cityblock_l GC and Length Yes Manhattan distance 0.508

max_l GC and Length Yes Max feature difference 0.510
euclidean GC No Euclidean distance 0.534
cityblock GC No Manhattan distance 0.543

max GC No Max feature difference 0.533
1 Feature values were used for three different genomic locations: The target exon, and the upstream and downstream introns.
Hence, a total of six features were used when length-based features were included, and three when only GC content-based
features were used.
2 Given the large differences in intron lengths, raw values were transformed to log10 scale.
3 When length-based features were used to calculate the distance, all features were standardized by removing the mean and
scaling to unit variance.

Figure 5.3: Heatmap displaying the accuracy scores of classifiers designed to distinguish exon groups across
various paired datasets generated using diverse strategies. Each cell represents a decision tree trained on a specific
strategy and RBP knockdown experiment. Decision trees were trained for RBP knockdown experiments with
more than 40 differentially spliced exons detected (Figure 5.2, N=49), using scikit-learn v1.2.1 with parameters
set to random_state=0, min_samples_leaf=3, max_depth=5. Performance was assessed by computing the mean
accuracy of test sets from a stratified cross-validation procedure with 10 splits. The N= at each row label indicates
the number of exons belonging to the knockdown class (Figure 5.2, they are the same across strategies). The full
dataset size is twice that number, when considering the exons of the control class (which vary across strategies).
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all knockdown-sensitive exons, selecting the closest control exon without replacement, ensuring
that each control exon is used only once.

To select the best strategy for control exon extraction, we created a decision tree
classifier for each paired dataset generated and tasked it to distinguish sequences from the
knockdown-sensitive and control groups based on the genome architecture features alone.
The idea is that the best strategy would be the one that harbors the worst cross-validation
classification accuracy, which would indicate that the control exons are indistinguishable from
the knockdown-sensitive exons based on gene architecture features, thereby aligning with our
goal. We observed that incorporating exon/intron length features and using the Euclidean
distance harbored the best results, with a median accuracy of 0.501 across all RBP knockdown
experiments used (Table 5.1, Figure 5.3). Indeed, distribution of each feature is very similar
between the knockdown-sensitive and control groups (Figure 5.4, Figures B.1 to B.5). Hence,
we moved forward with assurance using these datasets for subsequent analysis.

5.1.3 SpliceAI predicts differently exons sensitive to RBP knockdown

We first asked how SpliceAI would predict the sequences of the extracted datasets. We reasoned
that knockdown-sensitive exons, observed to undergo alternative splicing, would be predicted
with lower probabilities than the control sequences. To test this hypothesis, we extracted the
surrounding context of each exon (5000bp upstream of the splicing acceptor, 5000bp downstream
of the splicing donor) and fed them to SpliceAI. We observed skewed distributions on the
differences between exon groups (Figure 5.5A), which shows, on average, higher exon scores
in the control group over the knockdown group. These differences were statistically significant
in all paired datasets, except for DAZAP1 (Figure 5.5B). In addition, control exons were
predominantly predicted with values close to 1 (Figure B.6), which is consistent with the notion
that exons with strong splice sites are less susceptible to alternative splicing [43].

In summary, SpliceAI predicts alternatively spliced and constitutive exons differently.
Considering that we controlled for the potential confounding effects of gene architecture features,
these results suggest that SpliceAI has learned predictive sequence features of alternative
splicing.
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Figure 5.4: Distribution of GC content values for cassette exons in each paired dataset. The N= at each facet
(a single RBP paired dataset) indicates the total dataset size, including knockdown-sensitive and control exons.
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A B

Figure 5.5: Quantifying differences in SpliceAI predictions across exon groups. A - Distribution of differences
between exon pairs across 49 paired datasets. Each data point represents the subtraction of the control exon
score from the knockdown exon score. The exon score is the mean of SpliceAI predictions at the acceptor and
donor positions. Dashed vertical red lines indicate the median value of the distribution. B - Significance of the
differences between exon groups assessed by paired t-tests. P-values were corrected for multiple testing using the
Holm method. In both plots, the N= at each label indicates the number of knockdown-sensitive exons. The full
dataset size is twice that number.

5.2 Is SpliceAI sensitive to RNA-binding proteins motifs?

In this section, we use the paired datasets generated to study SpliceAI in a per-RBP manner.

5.2.1 MutSplice: targeted in silico sequence perturbations to interpret
SpliceAI

We aimed to investigate how the presence of known RBP binding motifs influences SpliceAI
predictions. In other words, we wanted to perform a model sensitivity analysis to measure the
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impact of perturbing sequence features on SpliceAI outcome. To do so in a scalable manner,
we developed a pipeline called MutSplice (Figure 5.6). MutSplice is a modular pipeline that
allows performing in silico sequence perturbations on a given set of sequences, running SpliceAI
inferences over them, and processing the output to be ready for downstream analysis. The
perturbations are not random; rather, they are guided by the location of known motifs in the
sequences, hence being domain-oriented.

Figure 5.6: Schematic representation of MutSplice pipeline.

Specifically, the MutSplice pipeline works as follows:
• Input - MutSplice accepts exon coordinates either in bed format or standard plain genomic

coordinates (chr:start-end). All additional preprocessing steps are handled internally.
• Genomic context extraction - MutSplice uses an internal transcript-aware genomic

cache to assign a transcript ID for each exon, considering properties such as the MANE
or CCDS status. It then extracts the genomic context, including surrounding introns and
exons, while tracking splice site indexes. This process establishes an exon triplet, which
serves as the sequence used for the analysis.

• Motif scanning - MutSplice scans the sequences for the presence of known RBP binding
motifs using FIMO [215]. Several custom and public motif databases are available, such as
ATrRACT [216] or oRNAment [217]. The output is a list of statistically significant motif
locations within the sequences. These locations serve as potentially informative features
of the model.

• Perturb motif locations - Perturbations in the sequences are performed at motif
locations identified in the previous step. MutSplice supports two types of perturbations:
full motif deletion, and an SNV at each motif position.

• SpliceAI inferences - MutSplice runs SpliceAI inferences over both the original and
perturbed sequences. Besides recording predictions at splice site positions of the exon
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triplet, MutSplice also saves high predictions at unannotated positions as they are putative
cryptic splice sites.

• Downstream processing - Raw SpliceAI predictions are processed to quantify
perturbation effects, further incorporating annotations like perturbation location,
distances to splice sites, and motif density. Additionally, some visualizations are generated
to help interpret the results.

MutSplice was implemented for the specific purpose of this chapter, and thus it is not a
production-ready software. However, it is designed to be flexible and contains a set of parameters
that allow analysis that extend beyond the scope of this chapter. MutSplice is implemented in
Python and is available at https://github.com/PedroBarbosa/mutsplice.

5.2.2 Motifs exert a greater impact on SpliceAI predictions in
knockdown-sensitive exons

For each paired dataset representative of a single RBP knockdown, we ran MutSplice to perform
in silico perturbations at motif locations of the target RBP. For example, for the paired dataset of
the SRSF1 knockdown, we remove the regions from the sequences matching the binding motif of
SRSF1 to evaluate their marginal effects on SpliceAI predictions of the cassette exon. In simpler
terms, these are ablation experiments where potentially informative features (constructed from
the motif scanning procedure) are removed from the input sequence.

Like before, we proceeded with the knockdown experiments involving a minimum of 40
differentially spliced exons (N=49, Figure 5.2). In addition, some paired datasets referring
to RBPs lacking binding motifs in the motif database were omitted from the analysis. This
exclusion was due to the inability to ablate the motifs of the target RBP, as there were no PWMs
available, rendering these datasets ineligible for this particular analysis. Among the available
motif databases incorporated in MutSplice, we opted for ATrRACT [216], as it contained a
greater variety of RBP motifs, resulting in 31 paired datasets for further analysis.

First, we examined the motif occurrences between each exon group, prior to the ablation
studies. We expected knockdown sequences to harbor more functional motif occurrences than
control sequences, given that their alternative splicing nature likely depends more heavily
on such regulatory sequences. However, we observed equivalent motif proportions for most
paired datasets between the two exon groups (Figure 5.7A). This observation is likely due to a
high noise-to-signal ratio in motif occurrences, as many motifs are not biologically functional.
Unsurprisingly, the number of occurrences (and their frequency relative to the dataset size) was
highly heterogeneous across RBPs. Ubiquitous, highly expressed core splicing factors such as
U2AF2, SRSF1, and hnRNP family members [218] showed the largest average number of motifs
per sequence (Figure 5.7A, numbers on the y-axis).

When we analyzed the motifs whose ablation impacted SpliceAI predictions of the cassette
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Figure 5.7: Percentage of motif occurrences from each exon group in each paired dataset. Integers next
to the datasets labels refer to the total number of occurrences, while floats stand for the number of motifs per
sequence (total number of motifs/paired dataset size). Statistical significance of motif occurrences between the
two exon groups was assessed using a binomial test, which tested the null hypothesis that the probability of success
(sampling a motif from a sequence of the knockdown group) is 0.5. p-values were corrected for multiple testing
using Bonferroni method, at a family-wise error rate of 0.05. A - All motifs detected by FIMO (p-value < 0.0005).
B - Motifs impacting SpliceAI predictions at the cassette exon positions. An impactful motif perturbation is
defined as a model change > |0.05| at the donor or acceptor positions compared with the original sequence.

exon (donor or acceptor change >|0.05|), we observed a different landscape. As we hypothesized,
a larger proportion of these impactful motifs belonged to the knockdown group (Figure 5.7B).
This finding indicates that despite the noise embedded in sequences, SpliceAI can detect signals
consistent with expected biology. Specifically, alternatively spliced exons, which have suboptimal
splice sites (Figure B.6), are more likely to be regulated by splicing factors [218]. In contrast,
control exons, predicted with probabilities close to 1 (indicating constitutive splicing), showed
resilience against RBP perturbations, with fewer ablations resulting in a model change compared
to knockdown exons (Figure 5.7B, except for TARDBP).

Notably, the number of impactful motifs was severely reduced compared to total motif
occurrences (Figure 5.7B, numbers on the y-axis). This confirms that only a small portion
of the motifs are likely biologically functional, assuming the model accurately represents biology
(Figure 5.8). These observations can be discussed from two perspectives: Technically, we already
expected most perturbations at putative motif locations to be irrelevant since we deliberately set
a fairly relaxed p-value threshold (p < 0.0005) to consider a motif hit as significant - a threshold
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Figure 5.8: Percentage of motif perturbations with impact on SpliceAI predictions at the cassette exon
positions, for each exon group. Numbers next to the dataset labels refer to the total number of motifs detected
for each exon group. The percentages were calculated with respect to these numbers.

commonly accepted in sequence analysis. Consequently, we are inherently accepting a high false
positive rate because our sequences are relatively long (over 10000bp to conform with SpliceAI
model input specifications), leading to thousands of motifs being considered significant purely
by chance [219]. Additionally, for short motifs (e.g., five nucleotides) with lower information
content, even a perfect match may not be statistically significant if using a too stringent p-value
threshold, hence eliminating potentially true biological motifs [215]. Our approach for model
ablations prioritized sensitivity over specificity, as we were interested in capturing as many
hypothetical true motifs as possible. Biologically, there are also multiple reasons for observing
such a low percentage of impactful motifs. Introns, for example, are large and contain RNA
binding motifs sparsely distributed in DNA. While some sequence elements may be identical
to known motifs, their functional relevance is heavily influenced by factors such as cell type
[202, 220], RNA structure [221–223], external stimuli [224, 225], and the surrounding sequence
context [222].

Taken together, we show that SpliceAI predictions are sensitive to the presence of known
RBP binding motifs, and this sensitivity is more pronounced in exons that were alternatively
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spliced upon RBP knockdown. In addition, the small fraction of impactful motifs suggests that
the model may have learned specific DNA syntax that distinguishes actual binding motifs from
background noise.

5.2.3 Long-range sequence features influence SpliceAI predictions
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Figure 5.9: Perturbations mainly affect cassette exons, regardless of perturbed motif location. A - Heatmaps
displaying the relative enrichment of impactful perturbations across different regions of the input sequences, for
all paired datasets. The values represent the z-scores of the fraction of all perturbations impacting the splicing
prediction of each considered region. Left heatmap: knockdown-sensitive sequences (24634 perturbations across
all datasets and regions); Right heatmap: control sequences (N=15986 perturbations across all datasets and
regions). Columns represent ablations affecting cassette, upstream, downstream exons, or any “Other” input
position. B - Distribution of SpliceAI scores (average of predictions at the splice acceptor and donor positions)
for exon triplets in all paired datasets. Top: Exons of knockdown-sensitive sequences. Bottom: Exons of Control
sequences. The number on each box represent the mean value of the SpliceAI scores. Whiskers extend to 1.5
times the interquartile range.

Because SpliceAI uses a much larger sequence context than any previous model, we aimed
to investigate whether the model indeed uses long-range features. To do this, we examined the
prevalence of spatially distant, impactful perturbations on the splicing of cassette exons. Initially,
we examined all perturbations affecting the prediction of any given position in the input sequence
(prediction change > |0.05|), irrespective of their proximity to the cassette exon. Interestingly,
we observed an enrichment of model ablations affecting the cassette exon compared to other
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input regions (Figure 5.9A), particularly pronounced in sequences of the knockdown group.
This underscores that model ablations predominantly influence the splicing of cassette exons,
irrespective of the motif’s proximity to the flanking exons or existing cryptic splice sites. By
examining the SpliceAI predictions of the upstream and downstream exons in original sequences
(with no ablations), we found they are predicted with close-to-1 probability (Figure 5.9B),
indicating their lower susceptibility to ablations. This finding supports the idea that alternatively
spliced exons are flanked by exons with optimal splice sites.

Next, we examined how much single ablations impact each splice site of the cassette exon.
The high correlation between acceptor and donor motifs becomes evident, as perturbations
affect both splice sites similarly (Figure 5.10A). This observation implies that SpliceAI does
not use the local splice acceptor or donor motifs alone; instead, it learned the rules of exon
definition by considering an optimal distance between the splice sites. This property was already
explored in the original SpliceAI publication [38]. We further demonstrate the long-range feature
dependency by plotting the number of impactful perturbations as a function of the distance to
the cassette exon. While most impactful perturbations are located at <200bp from the splice site,
we detected impactful perturbations as far as 3000bp away from the target exon (Figure 5.10B).

Analysis from a region-based perspective (rather than distance-based) revealed further
insights (Figure 5.11). As expected, the strongest perturbation effects occurred when the ablated
motifs overlapped with the exon borders and destroyed (or weakened severely) their splice sites.
Moreover, effect sizes tended to be negative, meaning that motif ablations often decrease splicing
probability (same trend visible at Figure 5.10A). This also aligns with our expectations, given
that cassette exons in our paired datasets are typically predicted with probabilities closer to
1 than 0 (Figure 5.9,Figure B.6), implying that in many sequences perturbation effects can
only be negative. Another interesting observation is that SpliceAI is sensitive to ablations that
locate in the exons flanking the cassette exon and their upstream/downstream regions (so-called
Intron_upstream_2 and Intron_downstream_2 regions), suggesting that SpliceAI, through its
long input context, implicitly uses exon determinants of flanking exons to influence cassette exon
splicing probability [226].

5.2.4 SpliceAI picks known binding rules of hnRNP and SR splicing factors

While previous analysis focused on an overview of SpliceAI sensitivity to distant features using
all paired datasets, we now delve into context-specific effects of individual RBPs for which the
binding rules were studied before. We first study the effect of RBP motifs on the SpliceAI score,
based on whether the binding motif is located within exons or introns.

We investigated six hnRNP proteins with the greater number of impactful perturbations and
observed that splicing-changing motifs mostly occur at introns (Figure 5.12). This is consistent
with the knowledge that hnRNP proteins primarily bind to intronic regions to regulate splicing
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Figure 5.10: Distance-based perturbation effects on the splicing of the cassette exon. A - Perturbation effects
on the splice donor and acceptor. “N” denotes the number of impactful perturbations, each representing one data
point. The parameters of a fitted regression line are displayed, along with the coefficient of determination R2.
The color of the points indicates whether the ablated motif locates in intronic or exonic regions. Top panel:
Knockdown-sensitive sequences. Bottom panel: Control sequences. B - Distribution of impactful perturbations
as a function of the distance to the cassette exon (min(distance_acceptor, distance_donor)). Top panel:
Knockdown-sensitive sequences. Bottom panel: Control sequences.

[43, 227]. We observed antagonist effects with hnRNP intronic motifs promoting both the
increase and decrease of splicing predictions by the model, supporting the complex positional
and context dependency of intronic motifs on exon activation and repression [47]. Although at a
much lower frequency, we observed impactful binding sites at exons. Intriguingly, for HNRNPH1
this frequency was unusually high, with a trend of HNRNPH1 motifs promoting stronger exons,
contrary to the classical role of hnRNP proteins repressing exon inclusion when bound to exons
[43, 113].

As for the SR proteins, we detected a high prevalence of impactful motifs within exons that
strengthen the probability of cassette exon splicing (Figure 5.13). This aligns with the known
role of this class of proteins in promoting exon inclusion when bound to exons [42, 43]. Intronic
impactful motifs revealed a more complex pattern. While the numbers are similar to exons, the
frequency is proportionally much smaller given the larger size of introns. We similarly observed
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Figure 5.11: Region-based perturbation effects on the splicing of the cassette exon for knockdown-sensitive
(left) and Control (right) sequences. Boxplot whiskers extend to 1.5 times the interquartile range. Exon’s Acceptor
region and Donor regions refer to ablated motifs that either overlap or are in proximity (< 2bp) to the splice
acceptor and splice donor, respectively.

positive and negative splicing effects, corroborating previous studies highlighting contradictory
functional consequences of SR intronic binding [228, 229].

To further disentangle the positional preferences of individual RBPs, we produced RBP maps
[230]. Traditionally, these maps are generated by looking at alternatively spliced exons (and its
flanking sequences) identified with RNA-Seq data (similar to what we did in Section 5.1.1 to
extract knockdown-sensitive sequences) and then use the binding profile of the target RBP
obtained from other data modality (e.g, peaks from eCLIP data) to infer positional rules by
which the target RBP regulates alternative splicing. Here, to study the model we split the
impactful perturbations by its effect (negative and positive), and used their location as a proxy
for functional RBP binding.

When focusing solely on negative-effect perturbations to the model for the same subset of
hnRNP and SR proteins, we observed enrichment profiles resembling the classical SR proteins:
cassette exon enrichment of enhancer motifs (Figure 5.14A), as indicated by a decrease in
SpliceAI score after their removal. Enrichment profiles of hnRNPs (except for HNRNPU)
were scattered across upstream and downstream intronic regions, extending approximately up
to 250bp into the intron. Notably, we observed stronger values at the first bin (-50bp) of the
upstream intron for HNRNPA1, PTBP1, HNRNPC, and HNRNPK, and at the first bin (+50bp)
of the downstream intron for HNRNPU (Figure 5.14A). For the former set of hnRNPs, and after
additional inspection, the enrichment at -50bp was due to T-rich motifs at the polypyrimidine
tract (-5bp to -20bp) that were probably important for the definition of the cassette exon
(SpliceAI probability decreased after their removal). These results highlight a limitation of
these analyses. Since several RBPs are known to bind the polypyrimidine tract, it is not possible
to fully determine the contribution of the target RBP to that splicing event without incurring
additional confounding effects. What we can infer is that SpliceAI is particularly sensitive to the
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Figure 5.12: Context-specific effects of motifs from six hnRNP proteins on SpliceAI predictions in
knockdown-sensitive sequences. Each ’N’ represents the number of ablations influencing the model outcome
(prediction difference > |0.05|). Ablation effect signs are inverted for clearer interpretation, reflecting the marginal
effect of motif presence on the model outcome.

Figure 5.13: Context-specific effects of motifs from three SR proteins on SpliceAI predictions in
knockdown-sensitive sequences. Each ’N’ represents the number of ablations influencing the model outcome
(prediction difference > |0.05|). Ablation effect signs are inverted for clearer interpretation, reflecting the marginal
effect of motif presence on the model outcome.

presence of such motifs upstream of cassette exons. Conversely, control exons appear resilient
to their ablation, likely due to strong splice site consensus motifs. That is what enrichment
means in this context. On the other hand, HNRNPU enrichment at the downstream intron
(Figure 5.14A) seems to be more specific, as most motifs were located between +30 and +50bp,
potentially serving as intronic splicing enhancers (SpliceAI probability decreased upon their
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removal).

For positive-effect perturbations, we obtained exonic enrichment of HNRNPA1, HNRNPU,
or HNRNPK hnRNP proteins, supporting their classical roles as splicing repressors when bound
to exons (SpliceAI score increased upon their removal, see Figure 5.14B). Regarding HNRNPC
and PTBP1, profiles resembling those of negative-effect perturbations were observed (enrichment
at upstream intron), implying that not only the position of the motif is important but also its
surrounding context, where epistatic interactions with other motifs may occur to drive opposite
effects on model predictions [43]. SR proteins showed distinct enrichment profiles, as they no
longer cluster together (Figure 5.14B). This is consistent with SR proteins’ complex, non-linear
regulation landscape when not promoting exon inclusion [228].

RBP enrichment profiles were generated for all RBPs (Figure 5.14 C, D). While interpretation

A B

C D

Figure 5.14: Position-dependent enrichment of impactful perturbations in knockdown-sensitive versus control
sequences for all paired datasets. The distance to the upstream/cassette/downstream exons was discretized
into region bins of 50bp, and the difference in the counts of impactful perturbations between sequences of the
knockdown-sensitive and control groups was calculated for each bin. Heatmap values indicate the extent to which
the differences in a specific region deviate from the mean of differences across all regions, for each RBP (row-wise).
A-B - Perturbations with negative and positive effects on model predictions for a subset of hnRNP and SR RBPs.
C-D - Perturbations with negative and positive effects on model predictions for all RBPs.
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rules for all RBPs are beyond the scope of this chapter, we note, for example, a strong enrichment
of FUS motifs deep in the downstream intron with opposing splicing effects, as previously
observed in [231]. We also introduced another axis to the analysis by splitting it based on the
direction of the effect observed in actual cells (sequences with more exon skipping - Figure B.7A
- or inclusion - Figure B.7B - upon RBP knockdown). The complexity of the results increases
even further. However, it was interesting to observe SpliceAI capturing the previously reported
correlation of RBFOX2 and QKI binding profiles at the intron downstream of skipped exons
upon RBP knockdown [113] (Figure B.7A, RBFOX2(-), QKI(-) rows, reflecting lower SpliceAI
scores upon motif ablation).

Taken together, we demonstrate that SpliceAI partially reflects known binding rules of
hnRNP and SR splicing factors. However, we reveal other complex and unexpected patterns
(e.g., HNRNPH1) that warrant further investigation.

5.2.5 Interpretable tabular machine learning fails to emulate SpliceAI

We previously demonstrated the high predictive performance of SpliceAI in assessing the impact
of genetic variation (Chapter 4). In this chapter, we studied alternative splicing and revealed
SpliceAI’s ability to differentiate between knockdown-sensitive and control sequences. Moreover,
we showed that SpliceAI leverages RBP binding motifs as informative features for predictions.
Given SpliceAI’s discriminative power and the previous relative success of tabular machine
learning models on predicting splicing levels using hexamer counts - k-mers of length 6 - as
features [119, 232], we sought to assess whether such simpler, and interpretable models could be
trained to mimic SpliceAI and contribute to its understanding.

Figure 5.15: Engineering sequence-based features for tabular machine learning. Four different strategies
to generate sequence-based features for predicting SpliceAI score. S1 and S2 strategies use as features motif
occurrences obtained by running FIMO over the sequences against the ATrRACT motif database (hits with a
p-value < 0.0001 were considered). S3 strategy uses fixed-length hexamer counts, while S4 strategy uses gapped
k-mer counts obtained by mapping the sequences to a feature space using a kernel function. All counts were
normalized to account for differences in sequence length.

We engineered four different sequence feature representations (Figure 5.15) to train regression
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models to predict SpliceAI scores, for each paired dataset. The two first representations were
derived from motif occurrences in the sequences at two levels of granularity (strategies S1 and S2
in Figure 5.15). The first was based on motif counts across the entire sequence, while the second
across different regions of the exon triplet (as defined in Figure 5.11). Importantly, while in the
ablation studies we were targeting motifs of the knockdown RBP, we now used motif occurrences
of all RBPs as putative informative features, as binding motifs of other RBPs may contribute to
the splicing outcome (e.g, additively or cooperatively). The last two representations are unbiased
to known motifs as they come from k-mer occurrences (strategies S3 and S4 in Figure 5.15). We
used both fixed length hexamer counts and variable length gapped k-mer counts.

The gapped k-mer representation is biologically motivated as it allows to capture the
degeneracy of RBP binding by treating similar subsequences with mismatches and gaps as a
single feature. For this special case, we employed a k-mer string kernel [233] to train Support
Vector Machines (SVMs) on the input sequences. We used the LS-GKM package [234] tailored
for regression problems [235]. The remaining feature representations (S1,S2,S3) were employed
to train standard scikit-learn models, such as Linear Models and Random Forests.

Results showed that no feature representation and model combination could predict SpliceAI
effectively (Figure 5.16), and that some configurations were arbitrarily worse than just predicting
the mean of the dataset (the Dummy regressors). The best results were achieved by using gapped
k-mers, although with low R2 values. The max R2 observed was 0.14 for the HNRNPK paired
dataset. We also tried to frame the problem as a classification task, where rather than predicting
the SpliceAI score, we predicted the exon group where a sequence belongs (knockdown-sensitive
or control) using the same feature representations. Once more, results were poor, with several
configurations performing as good as random guessing (Figure B.8).

It is worth noting that these tasks are challenging for such baseline models. The paired
datasets share similar sequence composition between exon groups (that was the goal of generating
these datasets, Figure 5.4), yet SpliceAI can predict alternative and constitute exons differently
(Figure 5.9B). These findings underscore that simpler models are not able to approximate the
DNN function. Even with the inclusion of gapped k-mers, fixed tabular features prove insufficient
to capture the complex sequence patterns learned by the DNN. SpliceAI leverages spatial
information embedded within sequences (even long-range features, as shown in Figure 5.10B)
and such contextual information captures genetic interactions that tabular models simply cannot
replicate.

5.3 Discussion and limitations

In this chapter, we conducted an interpretability analysis of SpliceAI through ablation studies
involving known RNA binding motifs. We utilized specialized datasets tailored for this purpose,
striving to mitigate the influence of other confounding factors on the model’s predictions
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Figure 5.16: Predicting SpliceAI score for each paired dataset (rows) using several models and feature
representations (columns). Performance was assessed by computing the mean coefficient of determination R2 of
test sets from a cross-validation procedure with 5 splits (and shuffle=True, random_state=42). Several models
were used: a Linear Regression model with L2 regularization (Ridge regression with alpha=1), a Random Forest
Regressor with n_estimators=10 and two gkm-SVMmodels, one with a linear kernel (gkmtrain -t2), and another
employing the RDF nonlinear kernel (gkmtrain -t3). Analysis includes also a baseline Dummy regressor that
always predicts the mean of the dataset. The N= at each row label indicates the dataset size which includes the
knockdown-sensitive and control sequences.

(Section 5.1.2). Through a comprehensive set of experiments, we found that SpliceAI predicts
alternatively spliced exons with lower probabilities (Section 5.1.3) and that those exons are more
sensitive to RBP binding motifs (Section 5.2.2). Furthermore, we have shown that SpliceAI
indeed uses distant features to define an exon’s probability (Section 5.2.3) and it appears to
have learned, to some extent, positional rules of RBP binding and their effect on the splicing
outcome (Section 5.2.4). Nevertheless, while these analyses provide valuable insights, several
aspects deserve further discussion.

5.3.1 Experimental setup

The datasets used in this chapter were generated by processing RNA-Seq data from knockdown
experiments performed in actual cells (Section 5.1.1). A gene knockdown experiment affects
the overall expression of the target gene (in this case, an RBP), meaning that all the genomic
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locations where the RBP binds to regulate splicing are, in theory, affected. However, in our
computational experiments, we removed one binding motif at a time so that the marginal
contribution of individual motifs could be assessed. Thus, this experimental setup does not
reflect the actual biology of a gene knockdown. Joint effects of motifs could be evaluated by
systematically removing all motifs simultaneously. However, depending on the number of motifs
per input sequence, this could create unrealistic (and much shorter) sequences that would render
model predictions unfaithful. Also, such a setup would make it harder to investigate positional
dependencies of individual RBPs, as we have done with individual motif ablations.

5.3.2 Underestimation of effect sizes

It has been established that the contribution of cis regulatory sequences where RBP proteins bind
is more subtle than that of the core splicing signals, such as the 3’SS, 5’SS and BP [43]. Indeed,
most impactful RBP binding motifs had moderate-to-small effect sizes, with the distribution of
ablation effects lying between |0.05| and |0.10| (Figures 5.12 and 5.13). Although this magnitude
may correlate with the actual motif importance in cells, the effect size predicted by SpliceAI
may be underestimated due to the neuron saturation problem of DNNs [30]. This is because
multiple occurrences of the same motif may saturate the contribution of that feature, meaning
that perturbing a single motif may not affect the output. In other words, multiple instances
of the same motif in the input sequence may compensate for the ablation we performed. To
counter this issue, we would need to run a reference-based attribution method like DeepLIFT
[23], but that runs out of the scope of this chapter.

The other aspect to consider was already touched upon in Section 5.2.3. Since for most exons
SpliceAI predicts splicing probabilities closer to 1 (mean of 0.83 and 0.97 for knockdown-sensitive
and control exons, respectively, Figure 5.9B), the effect of impactful ablations tended to be
negative. The effect of potential splicing-enhancing ablations (e.g., removal of splicing silencers
from sequences) was most likely underappreciated since predictions cannot go above 1.

5.3.3 Motif analysis for putative feature construction

To identify potential features within sequences for perturbation, we scanned our datasets with
motifs described as position weight matrices. In Section 5.2.2, we briefly addressed some
challenges inherent of such classical motif analysis, notably the high false positive rate when
scanning long sequences. Equally important is the underlying assumption of such analyses. We
operated under the assumption that the motifs identified represent the actual biology, upon
which all subsequent interpretation analyses were based. However, it’s known that many RBPs
have low sequence specificity [236] or their binding motifs are incompletely characterized [237].
Therefore, we cannot exclude the possibility that SpliceAI, trained blind to motif information,
may have learned motifs that are yet to be discovered and were not queried in our experiments.
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Moreover, there is the aspect of redundancy to consider. While some motifs are RBP-specific,
others are shared across multiple RBPs [222]. This implies that caution is necessary when
assigning feature importance to a single RBP. In our experiments, we partially controlled for
this issue by conducting analyses on a per-RBP basis, where we ensured that the most of
knockdown-sensitive exons were affected by only one or two RBP knockdowns (Figure 5.1B).

5.3.4 SpliceAI is cell-type agnostic

SpliceAI was trained on a large dataset of pre-mRNA sequences containing positions that are
either a splice site or not. Hence, when a new sequence is fed into the model, SpliceAI predicts,
for each position, the probability of it being a splice site (acceptor or donor). This classification
setup captures the strength of a splice site (how confident the model is that a position is a
splice site), but it is entirely agnostic to the usage of that splice site in a specific cell type. For
example, we can have the strongest splice site in the world, but if the gene where it belongs is
not expressed in the cell type under study, its usage is 0.

This is a limitation of the model, as the splicing outcome is highly dependent on the
cellular environment (e.g., which RBPs are present and at which concentrations) [46]. In our
experiments, we used exons that were affected by RBP knockdowns in the HepG2 cell line. When
examining the relationship between the dPSI and perturbation effect predicted by SpliceAI, we
observed no meaningful correlation (Figure 5.17). It shows that many perturbations predicted
by SpliceAI had the opposite effect compared to what was observed in cells. This outcome
was somewhat predictable, as the model was not specifically trained to predict dPSI. While
SpliceAI excels as an end-to-end prediction model of RNA splicing, care should be taken when
interpreting splicing changes in specific cellular contexts.

Figure 5.17: Relationship between SpliceAI perturbation effects (prediction change > |0.05|) in
knockdown-sensitive sequences and the deltaPSI observed in RNA-Seq data. In the cases where multiple impactful
perturbations were observed for a single exon, the same deltaPSI value was assigned to all of them.
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5.3.5 Deciphering new biology

In this chapter, we perturbed sequence features and measured how SpliceAI predictions changed.
We then performed post-hoc interrogations through various perspectives to understand the
model’s behavior. While this overview proved useful to pinpoint SpliceAI’s ability to learn known
biology, we now question whether such global analyses might limit its potential to uncover new
biological insights.

SpliceAI learned a highly complex representation of the RNA splicing mechanism, and our
attempts to construct simpler, interpretable surrogates to replicate its behavior were largely
unsuccessful (Section 5.2.5). While one can argue that we did not tune the models properly
(we did not perform hyperparameter optimization), we believe that no amount of tuning would
make a big difference. Instead, we wonder whether approximating the DNN function within
local regions of the sequence space might be beneficial for generating new biological hypothesis.
While the ultimate goal is to unveil general regulatory mechanisms and rules, the reality is that
each exon’s splicing may have its own specifics, given the vast combinatorial space of sequence
elements that can interact and influence the final splicing outcome [238]. Indeed, splicing research
has historically been conducted on individual exons [211], a practice that continues today (e.g.,
[239]). Therefore, in the next chapter, we explore strategies to study deep learning models and
splicing locally at the individual exon level.

80



Chapter 6

Semantically-rich synthetic dataset
generation with constrained Genetic
Programming

This chapter establishes the groundwork for employing evolutionary-inspired algorithms
integrated with domain knowledge through grammars, with the goal of exploring the local
behavior of sequence-based deep learning models. In particular, we discuss deep learning-guided
strategies for sequence generation and propose a GP approach for the task of generating
semantically rich synthetic datasets for explainable AI. Contributions of this chapter include:

• Synthetic data generation with a GGGP approach where grammars restrict the search
space by encoding RNA splicing knowledge. We extend the GeneticEngine framework
to support genomics applications, particularly by designing custom callbacks and
meta-handlers. We demonstrate the effectiveness of this approach by generating synthetic
sequences that span the whole prediction landscape of SpliceAI, with a significant
improvement over random search-based strategies.

Paper: P. Barbosa, R. Savisaar, A. Fonseca, “Semantically Rich Local Dataset
Generation for Explainable AI in Genomics”, GECCO '24, 2024 [40].
Reproducibility: https://github.com/PedroBarbosa/Synthetic_datasets_
generation

• Contributed to the evaluation and validation of Genetic Engine, a framework developed
in our group that implements GGGP.

Code: https://github.com/alcides/GeneticEngine
Paper: G. Espada, L. Ingelse, P. Canelas, P. Barbosa, A. Fonseca, “Data types
as a more ergonomic frontend for Grammar-Guided Genetic Programming”, GPCE
'22: Concepts and Experiences, 2022 [39].
Reproducibility: https://github.com/pcanelas/GeneticEngineEvaluation
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Chapter 6 6.1. Introduction

6.1 Introduction

In the previous chapter, we explored sequence perturbations as a strategy to interpret SpliceAI.
We demonstrated that some position-dependent patterns for known motif features could be
recapitulated globally (Section 5.2.4). However, taking a global perspective of the model’s
sensitivity to such features, coupled with the complexity of the RNA splicing domain, may
have hindered our ability to identify local sequence patterns important for model prediction.
In addition, we had limited data for a couple of RBPs to conduct a robust global analysis
(Figure 5.2), making a local analysis of the sequence space an appealing alternative.

Attribution methods (Section 3.4.2) could be employed to measure position-specific
nucleotide effects and, therefore, provide local explanations. However, these methods hold
some limitations. Results can differ according to the attribution method used [240], and
epistatic feature interactions are not quantified [30]. An alternative strategy is to generate local
synthetic datasets around a single input. These datasets harbor sequences with combinations
of perturbations, which can be used to train interpretable surrogate models on such localized
regions of sequence space. While the concept of local surrogates has been proposed for other
domains [31–33], its application to genomics has been proposed only recently [34], and not for
the RNA splicing problem.

For such surrogates to succeed, it is important that the local datasets contain sequences that
are not only syntactically similar but also semantically diverse, so as to extensively sample
the model fitness landscape. The generation of such a local dataset is a challenging task,
considering the vast combinatorial search space and the irregular fitness landscape. It requires
exploring the syntactic neighborhood of the target sequence and identifying perturbed sequences
that maximize the diversity of the semantic space. The search space grows linearly with the
length of the sequence and exponentially with the number of simultaneous single nucleotide
perturbations. It grows even faster when considering more complex, but realistic perturbations,
such as insertions of deletions of short lengths. As a result, techniques such as exhaustive
search or random search may not be feasible in this context. Exhaustive search becomes
computationally intractable, while random search is oblivious to the semantic space, which
may lead to datasets that sparsely cover the fitness landscape. We reason that some heuristics
are needed to efficiently explore the search space, and we therefore frame this problem as a
dataset generation task.

6.2 Deep learning-guided sequence generation

We now provide an overview of the state-of-the art methodologies that explicitly focus on
synthetic data generation in genomics. In particular, we explore various applications of sequence
generation guided by performant deep learning models.
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One such application is sequence design, which involves designing molecules with desired
outcomes, such as controlling gene expression levels [241] or developing more efficient mRNA
vaccines [242]. To do this, deep generative networks are used to model distributions of
sequences with desired properties [243–247]. These frameworks employ activation maximization
to maximize the property of interest by gradient ascent through the model oracle, typically using
an appropriate generative network based on Generative adversarial networks (GANs) [248] or
Variational Autoencoders (VAEs) [249]. Genetic algorithms have also been proposed, either
by greedily perturbing the best sequences [250], employing very large population sizes [251]
or evolving ensembles of optimization algorithms [251]. Recently, inspired by classical wet
lab experiments, directed sequence evolution has been used successfully to iteratively evolve
a random sequence into a synthetic, biologically functional sequence [252, 253]. This method
exhaustively measures the impact of SNVs at each iteration and selects the perturbation that
yields the largest model prediction change to be applied to the sequence. However, it’s important
to note that despite their utility, these approaches have inherent constraints. They do not
generate sequences covering the entire fitness landscape of the oracle (the semantic space). In
addition, many methods were not developed for model explainability, and can only scale to short
sequence contexts.

The use of synthetic data augmentations has been proposed to enhance model generalization
and interpretability [34, 240, 254]. In Prakash et al. [240], sequence generation is guided by a
motif-based pipeline to fine-tune trained models and benchmark different post-hoc explainability
methods. In contrast, EvoAug [254] applies random augmentations to the sequences during
pretraining, using the same label as the wild-type sequence. Then, the potential biases and
labeling errors created with the augmentations are addressed by fine-tuning on the original data
only. The adoption of these augmentations has demonstrated improved generalization and more
interpretable feature attribution maps. Finally, SQUID [34] employs synthetic data generation to
train interpretable surrogates to elucidate deep learning models in local regions of the sequence
space. This approach aligns with our goal, where oracle predictions serve as labels for the
synthetic dataset. However, in SQUID, perturbations are applied randomly without ensuring
comprehensive coverage of the model’s semantic space. This might be a limitation, depending
on the application. For instance, in our RNA splicing case study, if one wants to study what
drives the splicing levels of a wild-type exon from 0% inclusion to 100%, it is unlikely that the
randomly generated synthetic dataset will adequately cover the two far-reaching locations of the
semantic space.

6.3 Proposed approach

We propose using GP [103] to build local datasets generated from a single sequence. The
evolutionary loop evolves sequences containing perturbations that trigger diversity in the
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Figure 6.1: Summary of the proposed methodology.

semantic space of the deep learning model. Importantly, custom domain aware grammars restrict
the perturbations applied to the original sequence, hence significantly reducing the search space.

GP explores the search space by maintaining a population of interesting programs or
instances — in our case, combinations of perturbations — and by applying genetic operators
such as mutation and crossover. Throughout the evolution cycle, relevant individuals are copied
from the population to an archive. Once the evolution ends, either due to a time limit or
reaching the archive capacity, this archive becomes the final dataset. Thus, the population is
used to keep individuals that represent promising areas of the search space, not the final dataset
(Figure 6.1).

We use a domain-specific representation for individuals. Rather than sequences as
strings of nucleotides, we choose to represent the perturbations themselves using a grammar
(Section 6.3.1). This representation draws inspiration from diff files, which compactly represent
two similar files by listing only their differences. It offers several advantages, including reduced
memory usage compared to storing two complete copies and being easier for practitioners to
interpret. Additionally, genetic operators can work on the semantic level of a perturbation,
allowing the introduction of domain-specific and biological constraints.

Consequently, the initial population is randomly generated using the semantic rules
encoded in the grammar. This population undergoes evaluation by applying the perturbation
representation to the original sequence, resulting in perturbed sequences. These sequences are
then fed into the deep learning oracle to obtain predictions in the semantic space of the model.
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Perturbation Sequence DiffSeq ::= DiffUnit{1-6}
Perturbation DiffUnit ::= SNV

| Insertion
| Deletion

SNV SNV ::= SNV(Pos, Nuc)
Insertion Insertion ::= Ins(Pos, Nucs)
Deletion Deletion ::= Del(Pos, Size)
Multiple Nucleotides Nucs ::= Nuc+
Nucleotide Nuc ::= A

| C
| G
| T

Position Pos ::= int
Size of deletion Size ::= int

Figure 6.2: The core structure of the grammar used to represent an individual in respect to the original
sequence, presented in EBNF. Underlined symbols are terminals or meta-handlers.

Our goal is not to optimize the prediction itself, but rather the diversity within the archive’s
predictions (Section 6.3.2). To achieve this, we define two fitness functions (Section 6.3.3)
that are computationally lightweight and can guide the population towards archive diversity.
Finally, we follow a traditional GP loop, with tournament selection (size 5) and application of
grammar-guided genetic operators such as tree-based crossover and mutation (Section 6.3.4).
Additionally, we propose a custom mutation operator that promotes locality in the sampled
positions of perturbations, acting as a more local search than the traditional tree-based mutation.
As a case study, we focus on RNA splicing, particularly on exploring the prediction landscape
of SpliceAI (Section 6.4).

6.3.1 Representation

We devised a perturbation grammar to constrain the perturbations to be biologically plausible.
Using GGGP [104], extended with meta-handlers [39], both the population initialization and
genetic operators modify the representation of individuals within these constraints.

Our grammar (Figure 6.2) defines individual genotypes as a sequence of 1 to 6 perturbations
(DiffSeq, the starting symbol). Each perturbation (DiffUnit) can be one of three types: a
SNV(Pos,Nuc) parameterized with a position and a new nucleotide, an insertion of a short
sequence at a given position (Insertion(Pos,Nucs)), or a deletion of n nucleotides at a given
position (Deletion(Pos, Size)). Table 6.1 provides examples of different perturbations and
their effect on the resulting sequence.

Four principles guided the design of grammar: Firstly, the number of perturbations was
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Table 6.1: Examples of perturbations and their effect on the original sequence.

Original Sequence Perturbation Final Sequence

ATTCGCGTTA

[SNV(1,A)] AATCGCGTTA
[Ins(2,CG)]* ATCGTCGCGTTA
[Deletion(7,2)] ATTCGCGA
[SNV(1,A), Insertion(2,CG)] AACGTCGCGTTA

capped at 6 to preserve similarity to the original sequence. This restriction is important, as
increased dissimilarity would decrease explanatory value. Secondly, the three types of DiffUnits,
despite their varying lengths, represent types of genetic variation found in nature. We used
meta-handlers to restrict the length of deletions and insertions to a maximum of 5. Thirdly,
we prevent overlapping perturbations as it is impractical to keep track of the correspondence
between positions and the original sequence. In these cases, only the largest perturbation is kept,
hence prioritizing insertions and deletions over SNVs. Finally, we impose additional constraints
on exploring specific regions within the sequence based on problem-specific requirements. This
is particularly relevant when exploring certain regions that could significantly impact the search
process, potentially leading to local optima. For instance, in the context of the RNA splicing
problem, we explicitly restrict any DiffUnit within the positions [-10, 2] and [-3, 6] around
splicing acceptors (the start of an exon) and donors (the end of an exon), respectively. These
restrictions are enforced using meta-handlers on the values of the Pos non-terminal.

Ultimately, the genotype is a list of non-overlapping perturbations applied to the original
sequence.

6.3.2 Archive

The generation of the archive is the main outcome of the evolutionary algorithm. It is used as
a dataset for any downstream application. The archive has a fixed specified capacity S and is
composed of N equally-sized bins (or buckets). In this study, we used 5000 and 40 bins, each
representing a range of 0.025 within the black box prediction space {p ∈ R | 0 ≤ p ≤ 1}. The
optimal archive would maintain an equal and maximum capacity in all bins while also displaying
good diversity within each bin.

The quality (Q) of an archive A is the weighted sum of the number of sequences stored in
the archive (Asize), the archive inter-bin diversity (D̂), the intra-bin diversity (D̂per_bin) and the
fraction of bins with at least 10 sequences (Ano_low_count_bins):
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Q(A) = 0.3×Asize

+ 0.3× D̂

+ 0.2× D̂Per_bin

+ 0.2× (Ano_low_count_bins)

(6.1)

The raw archive diversity D is quantified using the Shannon diversity index and normalized
(D̂) to scale between 0 and 1:

D(A,N) = −
N∑
b=1

pAb
ln(pAb

)

D̂(A,N) =
D(A,N)

ln(N)

(6.2)

where pAb
stands for the proportion of the sequences in the archive belonging to the bth

prediction bin.
The intra-bin diversity Dper_bin measures the average diversity within each of the N bins by

further dividing each archive bin (Ab) into 10 equally-sized sub-bins and calculating the diversity
D̂(Ab, 10) for each. The final D̂per_bin is the average diversity across all bins:

D̂per_bin =
1

N

N∑
b=1

D̂(Ab, 10) (6.3)

Finally, the Ano_low_count_bins quantifies the fraction of bins with more than 10 sequences.
These factors balance a semantic representation that is both coarse and fine-grained, ensuring
an even distribution across all bins, and consider the total number of sequences in the final
dataset. While other metrics could be considered, we chose these for their relevance to our case
study.

6.3.3 Fitness Functions

The purpose of the fitness function is to assess how likely an individual is to be kept in the next
generation. For example, even the worst individual of a given generation can be added to the
archive if it helps improve its quality (fitness > 0). However, it will probably not survive for the
next generation and its genotype will be lost.

We define two fitness functions that take into account the current archive status: Bin Filler
and Increase Archive Diversity (IAD).

Bin Filler: This fitness function is directly proportional to the number of available slots in
the bin that the current individual i belongs to. It is defined as one minus the ratio between
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the number of archive sequences in the bin b (pAb
) and the target number of sequences per bin

T . T is computed a priori, based on the desired archive size S and the number of bins N :

BFi = 1− pAb

T

T =
S

N
.

(6.4)

It aims to promote the survival of individuals that belong to emptier bins. This enhances the
exploration of a combination of perturbations in the least explored areas of the oracle semantic
space.

IAD: This fitness function measures how much the addition of individual i to the Archive
increases its inter-bin diversity, as described in Equation (6.2):

IADi = D̂(A ∪ i,N)− D̂(A,N). (6.5)

It is designed to be less reliant on the current filling of each bin. Instead, it assigns higher
fitness to a sequence if it positively contributes to the overall archive uniformity at that moment.
This strategy might be advantageous in avoiding being stuck on local optima since evolution
favors sequences that fully deviate from them. Nevertheless, both fitness functions share the
same overall goal.

6.3.4 Genetic Operators

We use standard tree-based GGGP mutation and crossovers, extended with meta-handlers [39].
In a typical GGGP mutation, a mutation at a given position of the list would generate random,
new elements for the remainder of the list. Through the usage of meta-handlers, mutations on
lists result in either adding, removing or replacing exactly one element.

We also designed a custom mutation operator that replaces a randomly chosen DiffUnit with
another one in proximity. This replacement is determined by a normal distribution centered at
the position of the old DiffUnit. This approach enhances the search for functional local motifs
in the sequence, a known property of biological sequences. As an example, a typical mutation
in a GGGP individual, like [SNV(7, G)], could replace the node position 7 with a randomly
sampled integer such as 8345. Our custom mutation would select the node and replace it with
[SNV(v, G)], with v ∼ N(7, 4).

6.4 Evaluation methodology

To assess our GGGP method for local dataset generation, we employ it to synthesize local
datasets for explaining SpliceAI, a neural network that models RNA splicing (Section 6.4.1).
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We describe the specific experimental settings, including hardware and software details, in
Section 6.4.2. Additionally, in Section 6.4.3, we detail the baseline approach against which our
methodology is compared. Finally, Section 6.4.4 details our process for tuning hyperparameters.

6.4.1 Case Study

While several applications for sequence generation do exist, our evaluation focuses on the
problem of RNA splicing. In particular, we aim at generating synthetic datasets for local
explainability of the SpliceAI model [38]. SpliceAI has shown remarkable success in the
prediction of pathogenic variants [155, 156, 206], and we have provided the same evidence
for deep intronic regions of the human genome (Chapter 4). In addition, SpliceAI predicts
constitutive and alternatively spliced exons differently (Chapter 5), suggesting that the model
has indeed learned, at least partially, mechanistic rules of the splicing code.

In this study, the input is a DNA sequence representing an exon triplet along with the
intervening introns. The goal is to generate sequences that influence the probability of inclusion
of the middle exon (the so-called cassette exon). In biological terms, we target the generation
of sequences to model exon skipping, the most prevalent alternative splicing event in the human
genome [255]. Although SpliceAI does not directly model PSI, a well-established metric for
quantifying exon inclusion levels, we use the average of SpliceAI predictions at the acceptor
and donor positions of the cassette exon as a proxy for PSI values (as done in Chapter 5). This
decision is justified by the observed correlation with PSI measurements from RNA-Seq data [38].

The SpliceAI input is bounded to 10,001 nucleotides, ensuring that 5k of flanking context on
both sides is considered for prediction of each central position undergoing evaluation. Sequences
(exon triplets) shorter than this resolution were padded whereas sequences longer than 10k
nucleotides were trimmed to conform with the model input dimensions.

As a proof-of-concept, we used the exon 6 of the FAS gene, an exon extensively studied [238,
256–258] due to the fact that excluding this exon switches the protein’s function from
pro-apoptotic (programmed cell death) to anti-apoptotic. In addition, the PSI levels of this
exon vary across tissues and displayed intermediary PSI levels of 60% in a minigene construct
containing exons 5-7 and the corresponding introns [258]. Similarly, using the same genomic
context, SpliceAI predicts a PSI value of 0.4921 for exon 6, aligning with the observed behavior
in real cells.

6.4.2 Experimental settings

Our approach and the baseline were implemented on top of GeneticEngine v0.8.5 [39], which
supports meta-handlers that allow encoding constraints on the perturbations.

All the experiments were conducted on a Ubuntu 22.04 server with an AMD Ryzen
Threadripper 3960X 24-Core Processor with 96GB of usable RAM. The GPU used for model
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inferences was an NVIDIA GeForce RTX 3090 with 24Gb of VRAM, running on CUDA
v12.3 and Python 3.10.12. Reproducibility instructions are available at https://github.com/
PedroBarbosa/Synthetic_datasets_generation. The datasets generated in this study are
available on Zenodo at https://doi.org/10.5281/zenodo.10607868.

6.4.3 Baseline

Existing work that generates local synthetic sequences employs either random [34] or exhaustive
(from a short 500-nucleotide sequence [253]) sampling. Since exhaustive search is impractical for
large search spaces like ours, we adopt Random Search (RS) as the baseline. It is worth noting
that the baseline also takes advantage of our semantically rich encoding and does not operate
on sequences directly, thus enabling us to focus the evaluation on the impact of the GP loop.

Both approaches are compared with the same time budget and are implemented on the same
framework, reducing the impact of external factors in our evaluation.

6.4.4 Hyperparameter Optimization

We used Optuna v3.4.0 [259] for hyperparameter optimization of the evolutionary algorithm.
The objective was to identify the optimal configuration that maximized archive quality, as
in Equation (6.1). We used Tree-structured Parzen Estimator Approach (TPE) [260] for
parameter sampling. The optimization process was carried out until 500 trials were successfully
completed. Each trial was set to finish when either of the following conditions was met: the
archive accumulated 5000 sequences, or the allocated time budget of 5 minutes was reached.
We also added soft constraints on the sum of certain hyperparameters, favoring their total
to be between 0.5 and 1. These constraints were applied to three sets of parameters: the
sum of SNV grammar weight, Insertion grammar weight and Deletion grammar weight; the
sum of Genetic operators weight, Elitism weight and Novelty weight; and the sum of Mutation
probability and Crossover probability. The search space for all hyperparameters is reported in
Table 6.2. Individual optimizations were conducted for each of the fitness functions, resulting
in four distinct optimization runs: GGGP_BinFiller, RandomSearch_BinFiller, GGGP_IAD
and RandomSearch_IAD.

6.5 GP with Bin Filler as fitness function performs best

Firstly, we compared the top five Optuna trials of each strategy throughout an evaluation using
five random seeds (Figure 6.3A). We observed a high agreement across seeds within each strategy,
except for a single trial with the IAD fitness function. The best overall configuration resulted
from combining Genetic Programming with Bin Filler, both in the final quality of the archive
and the rate at which it increases throughout the evolution.
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Table 6.2: List of hyperparameters tuned by Optuna along with the best values for each strategy

Hyperparameter Search space GGGP_BF GGGP_IAD RS_BF RS_IAD

Max DiffUnits Int{1,2,3,4,5,6} 5 4 6 5
Max insertion size Int{1,2,3,4,5} 5 5 5 5
Max deletion size Int{1,2,3,4,5} 3 1 5 4

SNV grammar weight Float[0, 1] (Step 0.05) 0.05 0.15 0.1 0.25
Insertion grammar weight Float[0, 1] (Step 0.05) 0.75 0.25 0.85 0.4
Deletion grammar weight Float[0, 1] (Step 0.05) 0.3 0.1 0.15 0.35

Population size Int[100, 1900] (Step 200) 500 700 1300 1900
Selection method * Cat{Tournament, Lexicase} Tournament Tournament - -

Crossover probability * Float[0.05, 5] (Step 0.05) 0.25 0.2 - -
Mutation probability * Float[0.2, 1] (Step 0.1) 0.7 0.7 - -

Use custom mutation operator * Bool{True, False} True True - -
Custom mutation operator weight * Float[0, 1] (Step 0.1) 0.8 0.7 - -

Genetic operators weight * Float[0, 1] (Step 0.1) 0.8 0.8 0 0
Elitism weight * Float[0, 1] (Step 0.1) 0 0.1 0 0
Novelty weight * Float[0, 1] (Step 0.1) 0.1 0 1 1

* In Random Search, these hyperparameters were not optimized. We strictly set Novelty weight to 1 and Elitism and Genetic
operators weights to 0, turning the other highlighted parameters untouched.

A B

Figure 6.3: Archive quality evaluation between the GGGP and baseline experiments. A - Average
archive quality throughout the search procedure for four strategies (GGGP_BinFiller, RandomSearch_BinFiller,
GGGP_IAD and RandomSearch_IAD). We show only the top 5 trials of each strategy, each representing the
average of 5 seeds. B - Distribution of the archive quality of the top trial of each strategy over 30 seeds. Statistical
significance was assessed using Welch’s t-tests for three pairs of samples: two comparing the means of the GGGP
and baseline when using the same fitness function, and one comparing the GGGP with different fitness functions.
P-values were adjusted for multiple testing using the Bonferroni correction.

Next, we executed 30 seeds of the top trial of each strategy (Table 6.2). The larger number of
seeds confirms the effectiveness of GGGP with Bin Filler and highlights significant performance
differences between GGGP and Random Search (Figure 6.3B). When comparing the two fitness
functions, GGGP with IAD was competitive against Bin Filler, achieving a median archive
quality of over 0.95. Interestingly, the hyperparameter search yielded a lack of novelty (weight
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0 in Table 6.2), rendering the evolution highly dependent on the search space covered during
population initialization.

To further explore the impact of the fitness functions, we conducted a small experiment
wherein we used the best parameters derived by Optuna for GGGP with IAD and BinFiller,
but exchanged the fitness functions between them. The best results stemmed from the
parameter configuration derived for BinFiller, rather than from the specific fitness function
used (Figure 6.4A). This suggests that the fitness function may not be the primary driver
of the evolutionary search outcome; instead, the parameter setup appears to play a major
role. Interestingly, when examining the average edit distances to the original sequence, we
observed that the parameter setup obtained for IAD (IAD, BF_IAD experiments) yielded
simpler genotypes, regardless of the fitness function (Figure 6.4B). Hence, although not being
the most performant in archive quality, this configuration could prove beneficial for downstream
interpretability applications.

A B

Figure 6.4: Evaluation of the fitness function effect in the evolutionary search outcome. Four different
strategies are displayed: Optuna-derived GGGP parameters for BinFiller and IAD, plus two experiments. These
involve using IAD as fitness function with the BinFiller-optimized parameters (IAD_BFsetup), and vice versa
(BF_IADsetup).A - Boxplots displaying archive quality variability based on 30 different seeds. B - Lineplots
showing the average edit distance (number of nucleotides that differ from the original sequence) of the archive
sequences along the evolution time based on 30 different seeds.

6.6 Ablation studies reveal domain-specific insights

Using the best configuration, GGGP with Bin Filler, we explored how different components can
effect evolution performance.
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6.6.1 Lexicase selection

First, we replaced Tournament selection with Lexicase selection [261] with two objectives.
Besides maximizing the quality of the archive (first objective), we also minimized the edit
distance between the generated sequences and the original one. This second objective aims
to reduce the syntactic diversity of the generated dataset, thereby potentially enhancing its
explainability.

Surprisingly, Lexicase selection performed very poorly regarding archive quality
(Figure 6.5A). While the second objective helped the generation of simpler genotypes (lower
average edit distance of the archives compared to the best configuration), this hurt overall
performance. Custom hyperparameter tuning for Lexicase selection did not improve the
results (data not shown). In addition, the slow rate at which sequences were added to the
archive suggests that Lexicase hindered the exploration of sequence space (Figure 6.5B). This
is likely because most sequences added to the archive were selected based on the primary
objective. Conversely, the second objective, which probably favored individuals with a single
SNV, primarily slowed down the evolutionary process. This observation reflects biological
complexity: higher edit distances, which are important for exploring epistatic interactions, are
likely necessary for fully capturing the biological fitness landscape.
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Figure 6.5: Impact of Lexicase selection in the final archive. A - Average edit distance as a function of
archive quality for tournament and lexicase selection across 30 different runs. The horizontal lines reflect the
median archive quality of each selection method. B - Averaged archive size throughout 30 different runs.

6.6.2 Custom mutation operator

Next, we examined how the custom mutation operator affects archive quality. The best setup
displayed a custom mutation rate of 0.8, where 80% of GGGP mutations swap DiffUnits
with others in spatial proximity. We conducted experiments testing ten additional rates by
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incrementally decreasing this value from 1 to 0, consequently increasing the standard random
mutation rate.

We found that reducing the custom mutation rate negatively impacted the overall quality
of the archive, especially when relying solely on standard GGGP random mutation (rate 0),
as illustrated in Figure 6.6. This outcome strongly suggests that exploring DiffUnits in a
more localized manner is targeting functional motifs faster than when mutating across the
whole sequence. These results highlight the benefit of embedding domain and problem-specific
properties in the design of the evolutionary algorithm.

Figure 6.6: Impact of the frequency of the custom mutation operator (vs standard GP tree-based mutation)
in the final archive quality, across 30 seeds.

6.6.3 Restricting the types of perturbations

Lastly, we assessed the performance impact of omitting certain DiffUnits from the grammar.
As expected, when omitting both deletions and insertions (only SNVs are allowed) the archive
quality was reduced, as there was no sufficient sequence edits to explore the whole model
prediction landscape (Figure 6.7A, NoDelsAndIns points).

Interestingly, when only insertions were excluded from the evolution, archive quality also
dropped to similar levels as for the NoDelsAndIns configuration. In contrast, the exclusion
of deletions (NoDels) appeared to have minimal impact on performance (Figure 6.7A). This
pattern suggests that insertions play a crucial role in improving black box prediction coverage. In
particular, this is evident for score bins greater than 0.9, which are the hardest to reach under all
conditions: grammars without insertions (NoIns, NoDelsAndIns) contribute disproportionately
fewer sequences at these bins compared to grammars with insertions (NoDels, BestConfig, as
shown in Figure 6.7B).
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Figure 6.7: Impact of excluding specific grammar nodes on archive quality. Four conditions were tested: the
best configuration, the best configuration without deletions (NoDels), without insertions (NoIns) and without
both (NoDelsAndIns). A - Average edit distance and archive quality for each condition across 30 seeds. Horizontal
lines represent the median archive quality for each condition. B - Number of unique sequences generated across
30 seeds in each score bin for each condition.

6.7 Generalizing to other input sequences reinforces differences
against baseline

To assess the generalizability of our approach to other sequences, we used RNA-Seq data from
the ENCODE [113], as done in Chapter 5. Specifically, we focused on the gene knockdown
of the RBFOX2 gene, a known regulator of alternative splicing [262–264], and extracted the
list of differentially spliced exons upon knockdown to be subjected to analysis using our
GGGP approach the Random Search baseline. We applied slightly different filters compared
to Section 5.1.1, where we did not exclusively focus on splicing events in protein-coding genes,
resulting in 144 exons to study. We have also integrated SQUID [34] into the benchmarks as a
second baseline (see Appendix C.1 for details on how it was done).

We found that GGGP outperformed Random Search and SQUID in dataset generation
quality across a diverse set of input sequences (Figure 6.8). On average, GGGP achieved 0.93
in archive quality, compared to Random Search’s 0.63 and SQUID’s 0.60, representing a ≈30%
improvement. Random Search outperformed GGGP in only 3 out of 144 sequences (0.02%),
and even then, the margin was minimal. In addition, we aimed to assess the impact of the
sequence length on performance. Since the proof-of-concept was carried out on a relatively
short sequence (FAS exon triplet plus 100 nucleotides on each side, totaling 1743 nucleotides),
we examined how the generated archives stand up to much longer sequences, which reflect larger
search spaces. We found more pronounced differences in longer sequences, underscoring that our
approach better navigates larger search spaces (Figure 6.8, GGGP-RS and GGGP-SQUID heatmap
annotations). Notably, GGGP performance appears unaffected by sequence length, maintaining
consistent archive quality across different sequence sizes (Table 6.3).

We further illustrate the influence of the original sequence prediction on the search outcome.
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Figure 6.8: Archive quality comparison across sequences of varying lengths (binned vertically), focusing
on performance differences between GGGP and the baselines. The heatmap annotations, in green, show the
performance difference between GGGP and each of the baselines (Random Search and SQUID).

Table 6.3: Mean archive quality for sequences at different sequence length intervals.

Sequence length class Number of sequences Random Search SQUID GGGP

0-2kb 16 0.732 0.702 0.92
2kb-4kb 24 0.743 0.678 0.927
4kb-6kb 34 0.652 0.603 0.93
6kb-8kb 35 0.571 0.552 0.946
8kb-10kb 13 0.596 0.573 0.963
10kb-12kb 22 0.501 0.514 0.911

In particular, when the model predicted values close to 0 or 1, we observed larger performance
differences between our approach and the baselines, especially when the original exon was
predicted with high probability (Figure 6.9). This makes biologically sense because exons
predicted to be constitutive (close to 1) or barely included (close to 0) in the final RNA transcript
are inherently resistant to changes across the PSI landscape [265]. These findings underscore

96



Chapter 6 6.7. Generalizing to other input sequences reinforces differences against baseline

0.0 0.2 0.4 0.6 0.8 1.0
Original SpliceAI score

0.0

0.2

0.4

0.6

0.8

GG
GP

 - 
Ba

se
lin

e

Random Search
SQUID

Figure 6.9: Differences in archive quality between GGGP and the baselines (Random Search and SQUID) as
a function of the SpliceAI score of the original sequence.

the effectiveness of our approach, especially considering our deliberate avoidance of perturbing
highly sensitive regions in the sequences, such as splice sites.

6.7.1 Motif analysis of synthetic datasets

We explored which known biological motifs were captured by the generated datasets by
quantifying the frequency of what we term “motif disruption” events - motif gains/losses relative
to the original sequence - in datasets generated by GGGP and Random Search. To do so,
we performed a classical motif analysis on the generated datasets to assess the presence of
ground-truth motifs in the synthetic sequences. We scanned sequences with motif PWMs using
FIMO [215] from the MEME suite v5.5.3. We used oRNAment [217] as the motif database, and
selected RBPs associated with RNA splicing regulation (according to [113]), which resulted in
PWMs from 36 RBPs for scanning. Only motif matches with a p-value < 0.0001 were considered.

From the motif scanning step, we additionally processed the output to measure the frequency
of motif disruption events per dataset, defined as the total number of motifs gained or lost
relative to the original wild-type sequence, divided by the dataset size. The dataset size is just
a normalization factor, since the number of generated sequences was not consistent between
Random Search and GGGP-based datasets.

Our analysis revealed a higher proportion of motif disruption events in GGGP datasets
(Figure 6.10, Motif Diff heatmap annotation), indicating that sequences generated by GGGP
contain richer biological information. However, 32 exons (22.2%) had datasets with a lower
number of disruption events (relative to the dataset size) compared to those generated by
Random Search. As GGGP datasets effectively cover the prediction landscape, it remains
unclear whether the model has learned previously unknown motif syntax or if the perturbations
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influencing the model’s predictions are merely spurious artifacts.

Figure 6.10: Archive comparison across sequences of varying lengths (binned vertically), focusing on motif
disruption events. Each dataset consists of the same run performed with five different seeds. The heatmap
annotations show the difference in the relative frequency of motif disruptions between GGGP and Random Search
for all motifs in the database (Motifs Diff) and for RBFOX2 only (RBFOX2 Diff).

We additionally explored motif disruption events for RBFOX2, specifically. Since the
analyzed sequences displayed splicing changes upon RBFOX2 knockdown, we wondered whether
the generated datasets, which cover the model prediction landscape, would also capture RBFOX2
motifs being gained or lost in the synthetic sequences. Interestingly, we observed no enrichment
of RBFOX2 motifs in GGGP datasets compared to Random Search, except for a couple of
exceptions (Figure 6.10, RBFOX2 Diff heatmap annotation). Upon further examination of
the results, we observed that 75 out of 144 original sequences (52%) did not exhibit any
RBFOX2 motif hits, and only 4 sequences contained more than 3 RBFOX2 motifs. The
low frequency of RBFOX2 motifs in real (wildtype) sequences suggests that many alternative
splicing events detected may likely be attributed to indirect effects of the RBFOX2 knockdown
(e.g., involvement as a member of a protein complex) rather than direct binding to RNA.
Another possible explanation for the similar frequency of RBFOX2 disruption events in GGGP
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and RS is the contextual landscape in which these motifs were gained or lost (e.g., their
sequence location or the presence of other perturbations in the same sequence). Although the
frequencies of RBFOX2 disruption events were similar, sequences with these events displayed
distinct SpliceAI delta score distribution profiles in the GGGP and Random Search datasets
(Figure 6.11). Synthetic sequences generated with GGGP were semantically richer, while
Random Search-derived sequences had RBFOX2 motif disruptions that did not affect the
SpliceAI score, making them irrelevant for the model’s predictions. This suggests that GGGP
may leverage RBFOX2-related perturbations, alone or in combination with other perturbations,
to drive predictions towards diverse regions of the prediction landscape.

Figure 6.11: Distribution of SpliceAI delta scores for synthetic sequences with RBFOX2 motif gains and
losses compared to the original sequence.

6.8 Studying the impact of an alternative PWM grammar

So far, we have proposed a GP approach that constrains possible perturbations using a grammar.
The grammar, described in Section 6.3.1, encodes a set of productions that define the rules for
generating synthetic sequences. Combined with Meta-Handlers, which enhance the grammar’s
expressive power by imposing type refinements (e.g., avoiding perturbations of splice site
regions), we have successfully generated synthetic datasets that cover the prediction landscape
of SpliceAI. However, the grammar remains relatively unconstrained since perturbations are
random. This may result in many ineffective perturbations and consequently longer convergence
times before achieving biologically meaningful changes.

Hence, we designed another grammar that restricts the perturbations to a set of
predefined motifs from PWMs (Figure 6.12). Just like the previous grammar (Figure 6.2),
the PWM grammar defines individual genotypes as a sequence of 1 to 6 perturbations.
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A
Perturbation Sequence DiffSeq ::= DiffUnit{1-6}
Perturbation DiffUnit ::= MotifSNV

| MotifIns
| MotifSubst
| MotifDel
| MotifAblt

SNV at Motif MotifSNV ::= SNV(MotifPos, Elem, Nuc)
Motif Insertion MotifIns ::= Ins(SeqPos, MotifSeq)
Motif Substitution MotifSubst ::= Subst(SeqPos, MotifSeq)
Motif Deletion MotifDel ::= Del(MotifPos)
Motif Ablation MotifAblt ::= Ablt(MotifPos, RandomNucs)
Motif Sequence MotifSeq ::= RBP{1-N}
RNA-binding Protein RBP ::= Motif{1-M}
Motif sequence Motif ::= Nuc+
Random Nucleotides RandomNucs ::= Nuc+
Motif Position MotifPos ::= int
Sequence Position SeqPos ::= int
Element within motif Elem ::= int
Nucleotide Nuc ::= A

| C
| G
| T

B

Figure 6.12: Perturbation grammar from PWMs. A - Core structure of the grammar used to represent
an individual in respect to the original sequence, presented in EBNF. Underlined symbols are terminals or
meta-handlers. Node names are shortened for space constraints. B - Types of grammar nodes (DiffUnits)
encoded in the grammar.

Now, each perturbation can be one of five types: MotifSNV(MotifPos, Elem, Nuc)
employs an SNV at a given element within an existing motif, MotifSubstitution(SeqPos,
MotifSeq) replaces a portion of the sequence with a motif at a given position,
MotifAblation(MotifPos, RandomNucs) removes a motif by shuffling out that portion of
the sequence, MotifInsertion(SeqPos, MotifSeq) inserts a motif at a given position, and
MotifDeletion(MotifPos) deletes a motif from the sequence. Of note, MotifSubstitution and
MotifAblation ensure the same sequence length after replacement, whereas MotifInsertion
and MotifDeletion result in a sequence length change. A visual representation of the grammar
nodes available is show in Figure 6.12B.

Importantly, this grammar requires an initial motif scan at the beginning of the evolutionary
run to extract the motif locations in the original sequence. Accordingly, we developed a set of
custom Meta-handlers to restrict the perturbation space to these existing motif locations. We
also maintained the rationale of avoiding perturbations around splice sites of the exon triplet
([-10, 2] and [-3, 6] around splicing acceptors and donors, respectively). We hypothesized
that by imposing more fine-grained biological constraints (motif vs. random perturbations),
we could achieve equally good performance with faster convergence, despite the increased
restrictions on the search space (less available regions to perturb).

By comparing the performance of GGGP against the Random Search baseline using both the
original and PWM grammars, we found that regardless of the grammar, GGGP outperformed
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Figure 6.13: Archive quality comparison across sequences of varying lengths, focusing on a grammar encoding
perturbations from PWMs. The first two heatmap annotations show the performance difference between GGGP
and the corresponding baseline, and the right-most annotation (GGGP(PWM) - GGGP) compares GGGP approaches
using different grammars.

Random Search in the same order of magnitude (Figure 6.13 GGGP-RS and GGGP -RS (PWM
grammar) heatmap annotation). However, contrary to our hypothesis, GGGP using different
grammars exhibited a large performance difference, with the original grammar producing
substantially better results (Figure 6.13, GGGP(PWM) - GGGP heatmap annotation). These
findings reveal two important insights. First, the impact of the grammar on the evolutionary
search outcome is substantial. Second, the PWM grammar may be too restrictive, both at the
locations where perturbations can occur (e.g., ablations and deletions are limited to known motif
locations) and the nucleotides that can be inserted or substituted (restricted to known motif
sequences). Because the deep learning model has learned unbiased motif representations from the
training data, the original grammar, which allows for random combinations of nucleotides, was
more effective in exploring the prediction landscape of the model. Nevertheless, this grammar
can be very useful for other type of experiments, as we will see in the next chapter.
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6.9 Exploring Pangolin as the deep learning oracle

In this section, we explore the impact of the oracle in the evolutionary search process. Instead of
SpliceAI, we employed Pangolin [141], which predicts splicing in four different tissues. By default,
Pangolin averages predictions across all tissues. However, due to the additional computational
overhead of running inferences for each tissue, we focused on a single tissue (heart) to render a fair
comparison with SpliceAI. This approach ensures that the evaluation of the population at a given
generation takes approximately the same amount of time. We used the same RBFOX2-sensitive
sequences and the grammar encoding random perturbations, as it previously yielded the best
results (Figure 6.13).

The datasets generated by Pangolin displayed lower quality than those generated by SpliceAI,
with a median archive quality of 0.683 compared to 0.93 for SpliceAI (Figure 6.14). Pangolin’s
derived datasets were of better quality in only 5 out of 144 sequences. These results do not
necessarily reflect the quality of the oracle itself. Instead, they suggest that it is more challenging
to cover the prediction landscape of Pangolin within the same time budget as SpliceAI. In other
words, SpliceAI is more sensitive to perturbations in the input sequence. Let us discuss this in
more detail.

Pangolin was trained using splicing quantifications from RNA-Seq data, representing an in
vivo snapshot of the splicing landscape. Unlike SpliceAI’s binary nature (is a position a splice
site or not), Pangolin predicts continuous values of splice site usage across different tissues. This
task likely required Pangolin to focus on more compact features to accurately predict continuous
labels and their variations across tissues, making it less sensitive to random perturbations. As an
example, if an exon is predicted with a very low score in heart tissue, and similar sequences were
observed in the training data at very low inclusion levels, it is reasonable to speculate that no
perturbations will easily lead splice site usage up to 1, assuming no data distribution shifts in the
synthetic sequences, which we explicitly control for by imposing a low number of perturbations
per sequence in the grammar. Hence, the lower quality observed in archives guided by Pangolin
(lower diversity in the model’s semantic space) may actually be a more realistic representation
of biology, considering the cell-type-specific nature of splicing regulation.

As before, we analyzed the motif disruption events and compared their prevalence between
datasets generated with Pangolin and SpliceAI. We found a similar proportion of motif disruption
events between the models (Figure 6.14, Motif Diff heatmap annotation), suggesting that
known motifs affect the models’ predictions at a similar level. This observation also holds for
RBFOX2 motif gains or losses (Figure 6.14, RBFOX2 Diff heatmap annotation).
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Figure 6.14: Archive quality comparison across sequences of varying lengths, focusing on two different
oracles, SpliceAI and Pangolin, using the grammar encoding random perturbations. The first heatmap annotation
shows the archive quality differences between SpliceAI and Pangolin. The two right-most annotations show the
differences in the relative frequency of motif disruptions between SpliceAI and Pangolin’s derived datasets for all
motifs in the database (Motifs Diff) and for RBFOX2 only (RBFOX2 Diff).

6.10 Conclusion

Based on the accumulated evidence, we conclude that our grammar-guided Genetic
Programming approach greatly improves over random sampling on the task of generating
semantically meaningful local synthetic datasets. We found this to be true not only in a relatively
short, controlled sequence (Section 6.5) but also for 144 sequences that are diverse in their length,
genomic location, and original black box score (Section 6.7). In these sequences, our approach
achieved an average 30% improvement over the baseline.

Our results have also highlighted the advantage of introducing domain knowledge in the
problem specification. By constraining highly sensitive regions in the sequence from being
explored, we force the evolutionary algorithm to learn alternative yet biologically interesting
paths to achieve semantic diversity. Indeed, we proved that synthetic sequences generated by
GGGP contain richer biological information (motif analysis in Section 6.7.1). Furthermore, our
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custom mutation operator that promotes locality proved beneficial compared to GGGP’s default
tree-based mutation (Section 6.6.2).

Finally, we demonstrated the impact of both the grammar and the model on the quality
of the generated datasets. Our results indicated that a simpler, less constrained grammar
more effectively covered the model’s prediction landscape (Section 6.8). Regarding the model,
SpliceAI-generated datasets exhibited higher quality than those generated by Pangolin, implying
that SpliceAI is more sensitive to perturbations and that a greater number of sequence positions
contribute to its predictions, which is not necessarily advantageous for its interpretability
(Section 6.9).
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Chapter 7

DRESS: a flexible framework for splicing
interrogations guided by deep learning
models

In this chapter, we build upon the concepts introduced in Chapter Chapter 6 by presenting
a software called Deep learning based Resource for Exploring Splicing Signatures (DRESS),
designed with a user-friendly client interface. While not introducing new scientific findings, this
short chapter demonstrates a practical application of grammars for computational biologists
interested in RNA splicing research. As DRESS is actively under development, we also highlight
features planned for future releases (Figure 7.1).

The main goal of this software is to provide a flexible framework for RNA splicing research
guided by performant deep learning models. Its strength lies in the embedded domain knowledge.
To illustrate its capabilities, we explore use cases involving exon 18 of the MYOM1 gene, whose
alternative splicing is critical for cardiac development [266, 267].

7.1 Dataset Generation

generate is the main command of this framework. It reads an input sequence and generates
synthetic sequences by performing data augmentations based on genetic algorithms and a deep
learning oracle. The augmentations are controlled via grammars, which encode constraints on
the sequence space. An overview of the main algorithm steps is presented in Algorithm 1.

The primary goal of the genetic search is to evolve sets of perturbations that span
the prediction landscape of the deep learning model. The command is built on top of
GeneticEngine [39], a framework for Genetic Programming in Python.
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Figure 7.1: Schematic of DRESS framework.

Algorithm 1: Genetic Programming Algorithm for Synthetic Sequence Generation
Input: Original sequence S, Perturbation grammar G, Fitness function F , Deep learning oracle O,

Fitness Threshold Tf , Stopping criteria C, Number of archive bins b, Max sequences per bin m,
Elitism rate e, Novelty rate n, Selection rate s

Output: Semantically rich dataset D
Initialize population P with N random individuals based on S and G;
Initialize archive A with b bins, each with capacity m;
Start timer;
P,A← EvaluatePopulationAndUpdateArchive(P , O, A, F , Tf);
while stopping criteria C not met do

Elitism: Select top e×N individuals based on fitness to carry over unchanged;
Novelty: Generate n×N new individuals based on S and G;
Selection: Perform selection on s×N individuals, apply crossover and mutation operators based
on G and their specific rates;

Update population P with new individuals;
P,A← EvaluatePopulationAndUpdateArchive(P , O, A, F , Tf);

end
Return archive A as dataset D;

Function EvaluatePopulationAndUpdateArchive(P , O, A, F , Tf):
Correct population P to ensure all individuals are valid based on G

Convert P phenotypes into sequences
Run oracle O in parallel on all sequences in P to get predictions y
foreach individual i ∈ P do

Calculate fitness Fi based on yi and archive A, considering current bin capacities
foreach individual i ∈ P do

if Fi > Tf then
Add i to archive A

return P , A
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7.1.1 Input preprocessing

The software simplifies the entire preprocessing of the input. It only requires the input exon(s) in
BED or tabular format, and automatically extracts genomic intervals such as surrounding exons
and splice site locations from an internal cache built from a GENCODE GTF. If transcript
IDs are provided, the extracted full input sequence will be transcript-specific, enabling the
study of even non-coding transcripts (e.g., NMD transcripts). By default, DRESS uses the
highest-ranked transcript that contains the input exon(s) (based on transcript flags such as
MANE or CCDS). DRESS can handle sequences of variable size without losing domain-specific
information. During inference, predictions for the target exon, which may be located at variable
positions across the sequences, are properly managed.

7.1.2 Evolutionary algorithm

In Algorithm 1 we described a high level overview of the genetic algorithm. Each step in the
process offers customizable options common to genetic algorithms, such as setting population
size, defining stopping criteria (e.g., number of oracle inferences, generations, elapsed time,
archive size), and choosing the selection method (e.g., Tournament, Lexicase).

Users can also adjust various hyperparameters related to the evolution of the population, such
as the weight given to elitism, novelty, and selection. These ratios can be dynamically adjusted.
For example, to initially explore the search space of possible perturbations and then exploit the
best solutions later on, the novelty/selection ratio can be set to decrease over generations. For
a purely random search over the perturbation space, the novelty rate can be set to 1.0.

DRESS also supports archive pruning, which simplifies individual genotypes by removing
irrelevant perturbations that do not affect the sequence score. Additionally, several logging
options are available to track the evolution of the population or archive, enabling downstream
analysis of how combinations of splicing perturbations evolved.

Lastly, the default fitness functions promote individuals such that the generated datasets
cover the full model prediction landscape (e.g, archives with high diversity). However, it can
be easily adapted with different fitness functions that guide the genetic algorithm into datasets
with desired PSI distributions.

7.1.3 Domain constraints are seamlessly integrated

The main advantage of the software is its ability to handle splicing-specific constraints. It would
be impractical to implement them in any other general-purpose genetic algorithm framework.
The domain knowledge is encoded through the definition of grammars with Meta-Handlers,
that restrict the search space to domain-meaningful values. DRESS has native support for
two grammars, the random perturbation grammar and the PWM grammar, introduced in the
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previous chapter. Defining custom grammars is straightforward, as they are implemented as
Python classes and Meta-Handlers are type refinements defined as Python Type annotations
(e.g., an integer between 5 and 10).

By default, DRESS avoids perturbing positions near splice sites to prevent drastic outcomes
when perturbing those regions. However, users can control these ranges via additional input
arguments. Furthermore, domain-informative tags can be provided to restrict the search space
further. For instance, to play with splicing without interfering with the cassette exon, one can
run the software with --untouched_regions cassette_exon.

Let us explore these features in more detail. We use as input sequence the exon 18 of
the MYOM1 gene, which is predicted by Pangolin with an inclusion level of 0.3263 in heart
tissue (average of the acceptor and donor positions). The donor site is predicted with low
usage, 0.1007. We will then study the impact of unperturbed splice donor motifs on the
splicing of a shuffled version of this sequence. To do this, we shuffle the input sequence of
exon 18, along with its surrounding introns and exons, using the --shuffle_input option. The
splice site regions will remain unchanged, controlled by the --acceptor_untouched_range and
--donor_untouched_range options.

While testing varying ranges of unperturbed splice donors, we will keep the acceptor site fixed
and unshuffled. This approach will help us determine how much of the real sequence context at
the splice site borders is needed to activate splice donor site usage. Below is an example of the
command used:

# We keep the acceptor motif fixed and unshuffled (last 10 nt of the intron
# and first 2 nt of the exon) while varying the unperturbed donor motif
# (X nt upstream and Y nt downstream of the donor site)
dress generate --model pangolin \

--pangolin_tissue heart \
--model_scoring_metric donor \
--stopping_criterium n_generations \
--stop_at_value 0 \ # No evolution is needed
--shuffle_input shuffle \
--acceptor_untouched_range -10 2 \
--donor_untouched_range X Y
myom1_exon18.tsv

The results show some interesting patterns (Figure 7.2). As a control, we observed that
when shuffling all the input, including the splice donor dinucleotide (0 and 1 on the x-axis), the
model predicts that the position is not a donor, regardless of how many exonic positions are left
unshuffled. As expected, when we increase the number of nucleotides left unshuffled, the splice
donor usage increases as the model recognizes a genuine donor region.
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Figure 7.2: Splice donor usage predicted in heart tissue by Pangolin across shuffled MYOM1 sequences with
varying ranges of unperturbed donor motifs. Each boxplot represents the distribution of predictions across 10
shuffles. The x-axis values indicate the number of intronic positions (starting at the donor site) that remained
unperturbed, preserving the real sequence context. The color of each group of boxplots represents the number of
upstream positions (within the exon) that were left unperturbed. The dashed black horizontal line represents the
unshuffled real sequence prediction.
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Figure 7.3: Feature attribution analysis for the splice donor position in the wildtype (real) sequence and
in shuffled sequences with varying ranges of unperturbed donor motifs. DeepLIFTShap was used (from https:
//github.com/jmschrei/tangermeme/) to compute attributions using 20 reference samples. Each subplot title
contains information about the unperturbed donor ranges as well as the Pangolin prediction. The black dashed
line represents the exon/intron boundary, and the brown lines represent the unshuffled sequence stretches.
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However, it is interesting to note that with 5 intronic positions left unperturbed, the model
predicts higher donor usage compared to the wildtype sequence, even though the remaining
genomic context is shuffled (Figure 7.2). Feature attribution analysis reveals higher attribution
values (difference to reference samples) at the donor region for sequences with larger prediction
scores (Figure 7.3). Because the splice donor motif remains unchanged, these results suggest
that regions of the shuffled sequence contribute not only to higher Pangolin predictions but also
to providing the proper context for the donor region to have larger attribution scores. The
shuffling likely disrupts silencing elements that normally constrain donor usage to low levels in
the real sequence. The alternative explanation - that shuffling created enhancing motifs - is less
likely, as the higher scores were consistently observed across multiple shuffles (Figure 7.2).

We now perform another simple experiment by performing several evolutions restricting
the regions of the exon triplet that can be perturbed (--untouched_regions option). In
particular, we will search on each region individually to assess which regions are more informative
to navigate through the PSI landscape of the cassette exon. Experiments are performed in two
different tissues, tissue and brain. An example of the command used to search just in the cassette
exon, avoiding perturbations in the flanking regions, is shown below:

# Example command restricting the search space to the cassette exon
dress generate --model pangolin \

--pangolin_tissue heart \
--untouched_regions exon_upstream \

intron_upstream \
intron_downstream \
exon_downstream \

--stopping_criterium archive_size time \
--stop_at_value 5000 5 \ # Stops when any condition is met
myom1_exon18.tsv

We observed varying levels of dataset quality depending on the region perturbed (Figure 7.4).
Unsurprisingly, the cassette exon, which is relatively long with 288 bp, is the most sensitive
region to variations in splice site usage, with datasets fully covering the model prediction space.
Since splice site regions are not perturbed by default, these results suggest that dress effectively
explores the exonic regulatory sequences to enhance or suppress splicing.

The quality of the datasets dropped considerably for other regions, with the upstream
intron showing more importance than the downstream intron, likely due to the regulation of
the branchpoint signal. The upstream and downstream exons contribute poorly to the splicing
of the cassette exon. Interestingly, there appears to be some tissue specificity, as datasets are
generally of higher quality for the brain. This may indicate that the splicing of this exon is more

110



Chapter 7 7.1. Dataset Generation

Upstream
exon

Upstream
intron

Cassette
exon

Downstream
intron

Downstream
exon

Region

0.0

0.2

0.4

0.6

0.8

1.0

Da
ta

se
t q

ua
lit

y

Heart
Brain

Figure 7.4: Quality of the generated datasets (measured as in Equation (6.1)) by constraining the search
space to individual regions of the exon triplet across two tissues.

tightly regulated in heart tissue, which is consistent with the importance of MYOM1 exon 18 in
cardiac development.

7.1.4 Individual sequence explainability

Each individual, representing a list of perturbations on the original sequence within the
population, is encoded using a grammar. The design of this grammar can make the phenotype
highly expressive and informative. By embedding valuable information in the individual’s
phenotype, we enable direct assessment of certain components in the model’s prediction. This
includes the location of the perturbation, distances to splice sites, and introduced or removed
motifs.

For instance, consider the same MYOM1 sequence we have been working with, with a
wildtype prediction of 0.32 in the heart tissue. We then generate synthetic sequences and,
after a few generations, examine the sequences that drive the prediction further from the
wildtype. Below, we present an illustrative command and examples of resulting sequences
both with the random perturbation grammar and the PWM grammar (using --which_grammar
motif_based):

dress generate --model pangolin \
--pangolin_tissue heart \
--stopping_criterium time \
--stop_at_value 2 \ # Let it run for 2 minutes
--max_diff_units 2 \ # Max number of perturbations per seq
--which_grammar random \
myom1_exon18.tsv
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Table 7.1: Examples of phenotypes for synthetic sequences generated with two different grammars.

Grammar Phenotype Prediction

Random Insertion[5016,TGCA,Exon_cassette,16]|
Deletion[5256,5260,Exon_cassette,31]

0.7095

Random SNV[4989,A,Intron_upstream,11]|
Insertion[5137,AT,Exon_cassette,137]

0.0307

PWM-based MotifInsertion[5281,TRA2A,8,Exon_cassette,6]|
MotifInsertion[7690,SFPQ,9,Exon_downstream,2403]

0.6415

PWM-based MotifInsertion[4976,RBM5,7,Intron_upstream,24]|
MotifDeletion[5051,SF1,7,Exon_cassette,51]

0.0177

As Table 7.1 shows, the phenotype of individual sequences is intrinsically interpretable. For
example, with the random perturbation grammar, two perturbations in the cassette exon - one
insertion and one deletion at 16 and 31 bp away from the splice acceptor - drive the Pangolin
prediction up to 0.7095. In another example, using the PWM-based grammar, a TRA2A motif
insertion of length 8 at the cassette exon, 6 bp upstream of the splice donor, along with the
insertion of a SFPQ motif of 9 bp at the exon downstream, enhances exon inclusion to 0.6415.
The expressive power of individual phenotypes allows for straightforward exploration of ‘what-if’
scenarios at the sequence level, providing valuable counterfactuals to study the model’s behavior.

7.2 Dataset filtering

The filter module is useful for filtering datasets created with the generate command. It
allows users to filter sequences based on their predicted PSI or splice site probability values, or
on specified tags. By default, the dataset generation process aims to cover the entire prediction
landscape. However, using this module the user can create subsets of data with desired splicing
outcomes.

For example, if we want to train a decision tree to classify sequences with varying PSI levels -
let’s say a delta PSI change of 0.5 relative to the reference - we would filter our MYOM1-exon18
synthetic dataset into two classes: sequences predicted at wildtype values (≈0.32) and those
predicted at ≈0.82. This can be achieved by running the following commands, where the
--allowed_variability option controls the deviation from the target value allowed:

dress filter --dataset myom1_dataset.csv.gz \
--target_dpsi 0 \
--allowed_variability 0.05 \
--outbasename wt_seqs
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dress filter --dataset myom1_dataset.csv.gz \
--target_dpsi 0.5 \
--allowed_variability 0.05 \
--outbasename dpsi0.5_seqs

Alternatively, if we want to extract all sequences with increased inclusion levels compared
to the wildtype sequence by a given difference, we would run the following command:

dress filter --dataset myom1_dataset.csv.gz \
--tag higher \
--delta_score 0.4 \
--outbasename high_psi

This command would output a dataset with sequences predicted to have PSI levels higher
than 0.72. These are just two examples, but the module allows for additional combinations of
filtering criteria, based both on the model’s predictions and on specific tags.

7.3 Planned features

We are developing another module to evaluate the generated datasets at various levels. This
module will include examining sequence motifs using classical motif analysis tools (e.g., FIMO)
and attribution methods such as DeepLIFTShap. Additionally, it will provide insights by parsing
and aggregating the phenotypes across the dataset, which can be used to highlight enriched
perturbed regions of the sequence across the prediction landscape. This will aid in debugging
and explaining the black box model. This module is not yet available, but we are actively
working on it.

Another planned feature is the addition of the vcf module,which will enable users to score
variants in VCF format. This feature will extend the scoring capabilities of SpliceAI or Pangolin
standalone packages by integrating transcript-specific predictions, considering hypothetical
transcript isoform switches (based on contrasting splice site usage/probability due to the
variant), and allowing the testing of multiple variants simultaneously. This last property will be
particularly useful when, for instance, a patient has multiple variants in the same gene in close
proximity and the user wants to understand the combined effect of these variants on splicing.

7.4 Final remarks

We developed a software to study RNA splicing by treating a deep learning model as an oracle
for experimental validation. Currently, DRESS supports SpliceAI and Pangolin, two of the
most widely used splicing sequence-based models. By providing a simple client interface, we aim
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for this software to be a valuable tool for splicing research. The insights it provides may help
generate new hypotheses and design lab experiments for further validation.

However, it is important to note that running the main command, generate, is impractical
in environments without GPU availability. Due to its reliance on model inferences during
population evaluation, running it on a CPU would result in significantly slower execution.

DRESS is available at https://github.com/PedroBarbosa/dress, and we are working
towards providing comprehensive documentation, tutorials, and additional use cases similar
to those provided here.
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Chapter 8

Discussion and conclusion

While each chapter includes its own discussion, this final chapter integrates the overall findings of
this work into a broader context, particularly considering the unprecedented pace at which deep
learning technologies are evolving. We also take an honest, critical view of possible limitations
of our work with room for improvement.

8.1 Variant effect prediction is not a solved task

Variant effect prediction is a critical task in genomics, serving as a fundamental step in
interpreting the molecular mechanisms underlying genetic diseases and traits. Improved
mapping of genotype-phenotype relationships enhances our understanding of the basis of life
and brings us closer to the promising, yet still distant, goal of personalized medicine.

Our research demonstrates that deep learning models can effectively predict the impact
of genetic variants on splicing (Chapter 4). Importantly, this performance holds for variants
disrupting splicing through diverse molecular mechanisms, highlighting the generalization
capabilities of sequence-based models in predicting splice sites. These models capture high-level
representations of the sequence determinants influencing splice site recognition. However, certain
aspects deserve further discussion.

We found relatively lower performance for exonic-like variants that likely affect splicing
regulatory elements (Figure 4.5). This may be attributed to the functional role of these elements
being context-dependent, a factor not explicitly considered in the tested models. Additionally,
other sources of information may have obscured the signal. For instance, the original SpliceAI
publication demonstrated that the model implicitly learned the positioning of nucleosomes
(fundamental units of chromatin) and used this information as a determinant for exon definition,
with regions of higher nucleosome occupancy correlating with higher SpliceAI scores.

For this class of variants, models specifically designed to predict RBP binding, such as those
proposed by Avsec et al. [268] and Ghanbari and Ohler [269], could be considered. However,
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these models are framed as binary classification tasks, predicting whether a given sequence is
bound or unbound by a specific RBP, thus losing spatial resolution on the exact binding site.
Recently, RBPNet was introduced, predicting experimental CLIP-seq signal at single-nucleotide
resolution, thereby overcoming the limitations of classification-based methods [270]. Notably,
RBPNet predictions were sensitive to splicing-associated variants near splice sites. Applying
RBPNet to our set of deep intronic variants within activated pseudoexons could be a valuable
future experiment.

The choice of benchmarking datasets is another important aspect to discuss. We employed
a conventional, time-consuming approach by manually curating deep intronic experimentally
validated disease-causing variants from the literature (Figure A.2). Additionally, we aggregated
and harmonized splicing-altering variants from multiple recent curation efforts, some parallel
to ours (Table 4.2). While valuable, this approach cannot scale genome wide and falls short
on the generation of negatives. Researchers tend to prioritize, test, and publish variants with
observed effects (positives), resulting in a scarcity of negative experimentally-validated data. To
address this, an orthogonal source of truth, such as large-scale saturated screens, are emerging
alternatives [271]. Massively parallel splicing assays (MPSAa) target all SNVs in and around
selected exons, simultaneously phenotyping cells carrying hundreds or thousands of genetic
variants of single genes. These assays can even create combinatorial libraries to assess the
effect of multiple variants simultaneously [258] - something not considered in our benchmarks.
Although these datasets are still scarce for splicing studies [238, 272–274], their availability
is expected to increase. As they become more prevalent, they will provide a highly valuable
resource for model benchmarking.

8.2 Moving beyond SpliceAI

We addressed model interpretability from various angles. In Chapter 5, we approached
model interpretability by focusing on SpliceAI, arguably the most widely used model for
splicing-associated analysis, by doing model ablations of RBP motifs. Our findings revealed
that SpliceAI indeed uses RBP motifs as predictive features, but caution is necessary
when extrapolating these results to broader biological contexts. In particular, additional
experiments could probe the specificity of the results, such as ensuring that our RBP-specific
knockdown-sensitive sequences are indeed more influenced by the target RBP motifs than by
motifs of other RBPs, or even random perturbations.

With the analysis in Chapter 6, we demonstrated that combinations of random perturbations
could effectively span the prediction space of the model. It remains unclear whether this
prediction coverage is strictly due to sequence motifs or if it involves other layers of splicing
regulation implicitly learned by the model, such as RNA structure or splicing kinetics. SpliceAI’s
lack of explicit training on quantitative cell measurements (e.g., PSI, splicing efficiency)
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complicates its use for understanding RBP logic in splicing regulation. When using Pangolin as
an oracle - which predicts splice site usage and was trained with RNA-Seq data - we observed
more challenges in navigating the prediction space (Figure 6.14). This observation suggests that
Pangolin might provide a more realistic landscape of splice site usage in vivo.

A recent modular architecture was proposed to enhance splicing prediction with a focus
on interpretability by explicitly modeling the binding locations of RBPs through an Adjusted
Motif component [275]. This component was trained using position-specific affinity matrices
derived from RNA Bind-N-Seq (RBNS) data for 79 RBPs, an in vitro assay that characterizes
RBP-RNA interactions. The model enforces sparsity to limit the fraction of sequence positions
bound by an RBP, focusing only on the positions with the highest affinity. While this approach
aims to provide interpretability by identifying which RBPs contribute to the model’s splicing
predictions, its overall performance was considerably lower compared to SpliceAI. Moreover, the
use of hard constraints that force the model to rely solely on previously known motifs restricts
its ability to discover new motifs and uncover novel splicing regulators.

8.3 Grammars express the language of the problem domain

We posit that Genetic Programming constrained by grammars can be a powerful alternative
for explainable AI. Our research demonstrates that GGGP can efficiently guide the search for
semantically-rich synthetic datasets (Chapter 6). Interestingly, the quality of the search heavily
depends on the grammar used, with a less constrained grammar employing random perturbations
outperforming a more fine-grained, motif-based grammar (Figure 6.13). Regardless, assuming
the model serves as an accurate oracle for the problem, these grammar-guided synthetic datasets
can be leveraged to extract valuable biological insights.

The intrinsic interpretability encoded in each population individual’s phenotype, defined by
the grammar’s production rules, enables immediate ‘what-if’ counterfactuals of model responses
at the individual sequence level. This approach bridges the gap between the model and domain
experts, contrasting with current attribution methods. While these methods highlight important
nucleotides, they require additional analysis to map these low-level features into higher-level
concepts like motifs. To facilitate model interrogations, we have developed a flexible software
package that abstracts many technical details, empowering users to interact with the model in
a domain-appropriate manner (Chapter 7).

A natural next step, which we did not explore due to time constraints, is generating
explanations from the synthetic local dataset. This would involve designing a grammar that
encodes domain-specific building blocks or concepts, guiding the evolutionary search toward the
most discriminative features within the grammar’s conceptual framework. For example, the
grammar could incorporate production rules representing splicing regulation mechanisms such
as motif presence, spacing, or splice site competition. The search would then explore optimal
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configurations of these concepts to explain the model’s predictions.
Furthermore, we could enhance the grammar’s expressiveness by integrating additional

constraints that align with human understanding. For instance, specific production rules could
cross-reference a motif’s location with existing peak data from eCLIP experiments, providing
empirical validation for binding site predictions [276]. Similarly, we could flag evolutionarily
conserved regions within the sequence [277], suggesting functional importance based on selective
pressure - a principle well-established in biology.

In this framework, each individual in the population serves dual roles: as a local surrogate
of the oracle (e.g., predicting splice site probability for a cassette exon) and as an intrinsically
interpretable entity. The tree-based structure of GP, combined with the domain-aligned concepts
encoded in the grammar, renders the model’s phenotype an explanation in itself. This approach
connects the latent space of the deep learning oracle with the mechanistic reasoning that
biologists seek. By presenting explanations in terms of biological constructs, greater trust in
these models can be established [278].

8.4 The rise of Large Language Models of DNA

Large Language Models (LLMs) have demonstrated remarkable capabilities in several NLP [2,
279] and protein tasks [280, 281]. Their applications in genomics have followed [282–285],
offering a promising new paradigm to decode functionality from DNA/RNA sequences,
particularly in non-coding regions of the genome, which are often sparsely covered by short
sequence motifs in seemingly random DNA. Unlike traditional sequence-based CNNs, these
models are trained through self-supervised learning to encode vast amounts of unlabeled
sequences (from human genomes or across different species) into rich contextual embeddings.
Such embeddings capture information about each token (which can be a single nucleotide [283]
or k-mers of fixed [282] or variable size [285]) and their relationships within the sequence.
Consequently, these embeddings can be leveraged for predictive downstream tasks, such as
splice site prediction [282, 283].

Base architectures include BERT-based models like DNABERT [286] and Nucleotide
Transformer [282], which scale poorly with sequence length, despite self attention alternatives like
flash attention applied in DNABERT-2 [285]. Convolutional-based alternatives like GPN [287],
HyenaDNA [283], and Evo [288] have been developed, with the latter two utilizing implicit
convolutions via Hyena operators [289] to achieve single nucleotide resolution tokenization and
efficient scaling of sequence size. The release of these models brings both exciting opportunities
and significant challenges, which are discussed next.

As more human genomes representing diverse population ancestries become available, and
as more species are sequenced, it is expected that pre-training will incorporate unprecedented
diversity. This could lead to the development of genome-wide biologically meaningful
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representations that the pre-training burden will handle. These representations can then be
utilized for any downstream task, assuming sufficient task-specific data is available. However,
a recent study has shown that providing pre-trained embeddings (not fine-tuned) as input for
baseline CNNs in several functional genomics tasks provided no advantage over standard one-hot
encoded sequences [290]. This suggests that cell-type specific cis-regulatory mechanisms needed
for a task must be learned during fine-tuning, and the costly pre-training provides no real benefit.
While fine-tuning (adjusting the weights of the LLM) is expected to improve performance in
downstream tasks, fine-tuning billion-parameter models requires large computational resources
that may not be affordable to academic labs. Additionally, interpreting such models becomes
even more challenging.

Recent applications of these models to splicing prediction tasks have been explored. For
instance, SpliceBERT [291] was pre-trained with RNA sequences of 72 vertebrates and, as
the name suggests, its architecture and modeling objectives are based on BERT. The model
showed moderate performance on zero-shot variant effect prediction, but benchmarks were not
performed against state-of-the-art supervised models like SpliceAI. Other foundational RNA
models predicting RNA-Seq coverage [292, 293] have been benchmarked for splicing prediction
tasks; however, the lack of single-nucleotide resolution outputs makes it harder to measure
variant effects or predict splicing PSI. A new model, SegmentNT [294], builds on top of
Nucleotide Transformer and proposes a segmentation model (a 1D U-Net architecture [295])
that predicts DNA sequences up to 30kb long to predict 14 different classes of genomic
elements, including splice site and exon probabilities, at single-nucleotide resolution. SegmentNT
performed on par with SpliceAI in predicting splice sites, but it extends SpliceAI by also
predicting full exon and intron probabilities, allowing for direct assessment of potential transcript
isoform switching due to variants directly from the sequence, which we would be very interested
to test. However, like SpliceAI, these predictions are cell type agnostic, making it still not
possible to study cis-regulatory tissue-specific splicing mechanisms.

8.5 Conclusion

We have presented a series of studies exploring the application of sequence-based deep
learning models in RNA splicing research. We argue that a model capturing cell type-specific
splicing regulation mechanisms is essential for advancing past the prediction of constitutive vs.
alternative splicing. With cell-type specific data that extends beyond the heavily used GTEx
and ENCODE datasets, the rise of population-scale trained foundational models, additional
modalities capturing RBP-RNA interactions, and further maturation of interpretability
frameworks (including ours), we envision that in the not-too-distant future, we will have models
that truly capture the cis-regulatory code of RNA splicing.

Importantly, with the rise of genomics LLMs, establishing more independent benchmarks
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becomes critical. It appears that two waves of approaches are competing for state-of-the-art
genomics modeling now. On one hand, large companies with substantial resources are training
billion-parameter models on vast amounts of data and using this knowledge for practical
downstream applications. On the other hand, foundational models trained on shorter sequence
regions targeted at specific tasks (e.g., 3’UTRs [296]) or standard supervised CNNs [297, 298]
still appear today as essential tools for modeling functional genomics data and interpreting its
cis-regulatory code. The future holds exciting possibilities, and we look forward to seeing how
these research developments will shape biological research in the coming years.

120



References

[1] A. M. Ozbayoglu, M. U. Gudelek, and O. B. Sezer, Deep Learning for Financial
Applications : A Survey, Feb. 2020. doi: 10.48550/arXiv.2002.05786. arXiv: 2002.
05786 [cs, q-fin, stat] (cit. on p. 1).

[2] J. Wei et al., Emergent Abilities of Large Language Models, Oct. 2022. doi: 10.48550/
arXiv.2206.07682. arXiv: 2206.07682 [cs] (cit. on pp. 1, 118).

[3] A. Esteva et al., “A guide to deep learning in healthcare,” Nat Med, vol. 25, no. 1,
pp. 24–29, Jan. 2019. doi: 10.1038/s41591-018-0316-z (cit. on p. 1).

[4] A. Esteva et al., “Deep learning-enabled medical computer vision,” npj Digit. Med., vol. 4,
no. 1, pp. 1–9, Jan. 2021. doi: 10.1038/s41746-020-00376-2 (cit. on p. 1).

[5] J. Zhou and O. G. Troyanskaya, “Predicting effects of noncoding variants with deep
learning–based sequence model,” Nature Methods, vol. 12, no. 10, pp. 931–934, Oct. 2015.
doi: 10.1038/nmeth.3547 (cit. on pp. 1, 2, 18).

[6] J. Zhou, C. L. Theesfeld, K. Yao, K. M. Chen, A. K. Wong, and O. G. Troyanskaya,
“Deep learning sequence-based ab initio prediction of variant effects on expression and
disease risk,” Nat Genet, vol. 50, no. 8, pp. 1171–1179, Aug. 2018. doi: 10.1038/s41588-
018-0160-6 (cit. on pp. 1, 14).

[7] F. E. Baralle and J. Giudice, “Alternative splicing as a regulator of development and
tissue identity,” Nat Rev Mol Cell Biol, vol. 18, no. 7, pp. 437–451, Jul. 2017. doi:
10.1038/nrm.2017.27 (cit. on pp. 1, 9, 10).

[8] A. Anna and G. Monika, “Splicing mutations in human genetic disorders: Examples,
detection, and confirmation,” J Appl Genet, vol. 59, no. 3, pp. 253–268, 2018. doi: 10.
1007/s13353-018-0444-7 (cit. on pp. 1, 11).

[9] O. Anczuków and A. R. Krainer, “Splicing-factor alterations in cancers,” RNA, vol. 22,
no. 9, pp. 1285–1301, Sep. 2016. doi: 10.1261/rna.057919.116 (cit. on p. 1).

[10] J. X. Chong et al., “The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges,
and Opportunities,” Am J Hum Genet, vol. 97, no. 2, pp. 199–215, Aug. 2015. doi:
10.1016/j.ajhg.2015.06.009 (cit. on p. 1).

121

https://doi.org/10.48550/arXiv.2002.05786
https://arxiv.org/abs/2002.05786
https://arxiv.org/abs/2002.05786
https://doi.org/10.48550/arXiv.2206.07682
https://doi.org/10.48550/arXiv.2206.07682
https://arxiv.org/abs/2206.07682
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.1038/s41746-020-00376-2
https://doi.org/10.1038/nmeth.3547
https://doi.org/10.1038/s41588-018-0160-6
https://doi.org/10.1038/s41588-018-0160-6
https://doi.org/10.1038/nrm.2017.27
https://doi.org/10.1007/s13353-018-0444-7
https://doi.org/10.1007/s13353-018-0444-7
https://doi.org/10.1261/rna.057919.116
https://doi.org/10.1016/j.ajhg.2015.06.009


[11] S. Srivastava et al., “Meta-analysis and multidisciplinary consensus statement: Exome
sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental
disorders,” Genet Med, vol. 21, no. 11, pp. 2413–2421, Nov. 2019. doi: 10.1038/s41436-
019-0554-6 (cit. on p. 1).

[12] K. J. Karczewski et al., “The mutational constraint spectrum quantified from variation
in 141,456 humans,” Nature, vol. 581, no. 7809, pp. 434–443, May 2020. doi: 10.1038/
s41586-020-2308-7 (cit. on pp. 1, 41, 44).

[13] D. Taliun et al., “Sequencing of 53,831 diverse genomes from the NHLBI TOPMed
Program,” Nature, vol. 590, no. 7845, pp. 290–299, Feb. 2021. doi: 10.1038/s41586-
021-03205-y (cit. on p. 1).

[14] A. Piovesan, F. Antonaros, L. Vitale, P. Strippoli, M. C. Pelleri, and M. Caracausi,
“Human protein-coding genes and gene feature statistics in 2019,” BMC Research Notes,
vol. 12, no. 1, p. 315, Jun. 2019. doi: 10.1186/s13104-019-4343-8 (cit. on p. 1).

[15] S. Shepard, M. McCreary, and A. Fedorov, “The Peculiarities of Large Intron Splicing
in Animals,” PLoS One, vol. 4, no. 11, e7853, Nov. 2009. doi: 10.1371/journal.pone.
0007853 (cit. on p. 1).

[16] K. Eilbeck, A. Quinlan, and M. Yandell, “Settling the score: Variant prioritization and
Mendelian disease,” Nat Rev Genet, vol. 18, no. 10, pp. 599–612, Oct. 2017. doi: 10.
1038/nrg.2017.52 (cit. on pp. 2, 30).

[17] J. Lord and D. Baralle, “Splicing in the Diagnosis of Rare Disease: Advances and
Challenges,” Frontiers in Genetics, vol. 12, 2021 (cit. on pp. 2, 30).

[18] S. Chakraborty et al., “Interpretability of deep learning models: A survey
of results,” in 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computed, Scalable Computing & Communications, Cloud
& Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Aug. 2017, pp. 1–6. doi: 10.
1109/UIC-ATC.2017.8397411 (cit. on p. 2).

[19] A. Ghorbani, J. Wexler, J. Y. Zou, and B. Kim, “Towards automatic concept-based
explanations,” in Advances in Neural Information Processing Systems, H. Wallach, H.
Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, Eds., vol. 32, Curran
Associates, Inc., 2019 (cit. on p. 2).

[20] P. W. Koh et al., “Concept Bottleneck Models,” in Proceedings of the 37th International
Conference on Machine Learning, PMLR, Nov. 2020, pp. 5338–5348 (cit. on p. 2).

122

https://doi.org/10.1038/s41436-019-0554-6
https://doi.org/10.1038/s41436-019-0554-6
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/s41586-021-03205-y
https://doi.org/10.1038/s41586-021-03205-y
https://doi.org/10.1186/s13104-019-4343-8
https://doi.org/10.1371/journal.pone.0007853
https://doi.org/10.1371/journal.pone.0007853
https://doi.org/10.1038/nrg.2017.52
https://doi.org/10.1038/nrg.2017.52
https://doi.org/10.1109/UIC-ATC.2017.8397411
https://doi.org/10.1109/UIC-ATC.2017.8397411


[21] G. Novakovsky, O. Fornes, M. Saraswat, S. Mostafavi, and W. W. Wasserman,
“ExplaiNN: Interpretable and transparent neural networks for genomics,” Genome
Biology, vol. 24, no. 1, p. 154, Jun. 2023. doi: 10.1186/s13059-023-02985-y (cit.
on pp. 2, 22).

[22] S. Nair, A. Shrikumar, J. Schreiber, and A. Kundaje, “fastISM: Performant in silico
saturation mutagenesis for convolutional neural networks,” Bioinformatics, vol. 38, no. 9,
pp. 2397–2403, Apr. 2022. doi: 10.1093/bioinformatics/btac135 (cit. on pp. 2, 18).

[23] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features through
propagating activation differences,” in Proceedings of the 34th International Conference
on Machine Learning, D. Precup and Y. W. Teh, Eds., ser. Proceedings of Machine
Learning Research, vol. 70, PMLR, 2017-08-06/2017-08-11, pp. 3145–3153 (cit. on pp. 2,
78).

[24] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,”
in Proceedings of the 34th International Conference on Machine Learning, D. Precup
and Y. W. Teh, Eds., ser. Proceedings of Machine Learning Research, vol. 70, PMLR,
2017-08-06/2017-08-11, pp. 3319–3328 (cit. on pp. 2, 20).

[25] A. Jha, J. K Aicher, M. R Gazzara, D. Singh, and Y. Barash, “Enhanced Integrated
Gradients: Improving interpretability of deep learning models using splicing codes as a
case study,” Genome Biology, vol. 21, no. 1, p. 149, Jun. 2020. doi: 10.1186/s13059-
020-02055-7 (cit. on pp. 2, 20).

[26] Ž. Avsec et al., “Base-resolution models of transcription-factor binding reveal soft motif
syntax,” Nature Genetics, vol. 53, no. 3, pp. 354–366, Mar. 2021. doi: 10.1038/s41588-
021-00782-6 (cit. on pp. 2, 14, 20).

[27] B. P. de Almeida, F. Reiter, M. Pagani, and A. Stark, “DeepSTARR predicts enhancer
activity from DNA sequence and enables the de novo design of synthetic enhancers,”
Nat Genet, vol. 54, no. 5, pp. 613–624, May 2022. doi: 10.1038/s41588-022-01048-5
(cit. on p. 2).

[28] M. Wu, M. C. Hughes, S. Parbhoo, M. Zazzi, V. Roth, and F. Doshi-Velez, Beyond
Sparsity: Tree Regularization of Deep Models for Interpretability, Nov. 2017. doi: 10.
48550/arXiv.1711.06178 (cit. on p. 2).

[29] B. P. Evans, B. Xue, and M. Zhang, “What’s inside the black-box? a genetic programming
method for interpreting complex machine learning models,” in Proceedings of the Genetic
and Evolutionary Computation Conference, ser. GECCO ’19, New York, NY, USA:
Association for Computing Machinery, Jul. 2019, pp. 1012–1020. doi: 10.1145/3321707.
3321726 (cit. on pp. 2, 23).

123

https://doi.org/10.1186/s13059-023-02985-y
https://doi.org/10.1093/bioinformatics/btac135
https://doi.org/10.1186/s13059-020-02055-7
https://doi.org/10.1186/s13059-020-02055-7
https://doi.org/10.1038/s41588-021-00782-6
https://doi.org/10.1038/s41588-021-00782-6
https://doi.org/10.1038/s41588-022-01048-5
https://doi.org/10.48550/arXiv.1711.06178
https://doi.org/10.48550/arXiv.1711.06178
https://doi.org/10.1145/3321707.3321726
https://doi.org/10.1145/3321707.3321726


[30] G. Novakovsky, N. Dexter, M. W. Libbrecht, W. W. Wasserman, and S. Mostafavi,
“Obtaining genetics insights from deep learning via explainable artificial intelligence,”
Nature Reviews Genetics, pp. 1–13, Oct. 2022. doi: 10.1038/s41576-022-00532-2
(cit. on pp. 2, 18–22, 53, 78, 82).

[31] M. T. Ribeiro, S. Singh, and C. Guestrin, ”Why Should I Trust You?”: Explaining the
Predictions of Any Classifier, Aug. 2016. doi: 10.48550/arXiv.1602.04938 (cit. on
pp. 2, 22, 82).

[32] R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and F. Giannotti, Local
Rule-Based Explanations of Black Box Decision Systems, May 2018. doi: 10.48550/
arXiv.1805.10820 (cit. on pp. 2, 23, 82).

[33] L. A. Ferreira, F. G. Guimarães, and R. Silva, Applying Genetic Programming to Improve
Interpretability in Machine Learning Models, May 2020. doi: 10.48550/arXiv.2005.
09512 (cit. on pp. 2, 82).

[34] E. E. Seitz, D. M. McCandlish, J. B. Kinney, and P. K. Koo, “Interpreting cis-regulatory
mechanisms from genomic deep neural networks using surrogate models,” Nat Mach
Intell, vol. 6, no. 6, pp. 701–713, Jun. 2024. doi: 10.1038/s42256-024-00851-5 (cit. on
pp. 2, 22, 82, 83, 90, 95, 175).

[35] L. R. Lopes et al., “Cryptic Splice-Altering Variants in MYBPC3 Are a Prevalent Cause
of Hypertrophic Cardiomyopathy,” Circ: Genomic and Precision Medicine, vol. 13, no. 3,
e002905, Jun. 2020. doi: 10.1161/CIRCGEN.120.002905 (cit. on pp. 4, 13, 28).

[36] P. Barbosa, M. Ribeiro, M. Carmo-Fonseca, and A. Fonseca, “Clinical significance of
genetic variation in hypertrophic cardiomyopathy: Comparison of computational tools to
prioritize missense variants,” Frontiers in Cardiovascular Medicine, vol. 9, 2022 (cit. on
pp. 4, 29, 154).

[37] P. Barbosa, R. Savisaar, M. Carmo-Fonseca, and A. Fonseca, “Computational prediction
of human deep intronic variation,” GigaScience, vol. 12, giad085, Oct. 2023. doi: 10.
1093/gigascience/giad085 (cit. on pp. 4, 29).

[38] K. Jaganathan et al., “Predicting Splicing from Primary Sequence with Deep Learning,”
Cell, vol. 176, no. 3, 535–548.e24, Jan. 2019. doi: 10.1016/j.cell.2018.12.015 (cit. on
pp. 4, 10, 25, 26, 30, 34, 70, 89).

[39] G. Espada, L. Ingelse, P. Canelas, P. Barbosa, and A. Fonseca, “Data Types as a More
Ergonomic Frontend for Grammar-Guided Genetic Programming,” in Proceedings of the
21st ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences, ser. GPCE 2022, New York, NY, USA: Association for Computing
Machinery, Dec. 2022, pp. 86–94. doi: 10.1145/3564719.3568697 (cit. on pp. 5, 81, 85,
88, 89, 105).

124

https://doi.org/10.1038/s41576-022-00532-2
https://doi.org/10.48550/arXiv.1602.04938
https://doi.org/10.48550/arXiv.1805.10820
https://doi.org/10.48550/arXiv.1805.10820
https://doi.org/10.48550/arXiv.2005.09512
https://doi.org/10.48550/arXiv.2005.09512
https://doi.org/10.1038/s42256-024-00851-5
https://doi.org/10.1161/CIRCGEN.120.002905
https://doi.org/10.1093/gigascience/giad085
https://doi.org/10.1093/gigascience/giad085
https://doi.org/10.1016/j.cell.2018.12.015
https://doi.org/10.1145/3564719.3568697


[40] P. Barbosa, R. Savisaar, and A. Fonseca, “Semantically Rich Local Dataset Generation
for Explainable AI in Genomics,” in Proceedings of the Genetic and Evolutionary
Computation Conference, ser. GECCO ’24, New York, NY, USA: Association for
Computing Machinery, Jul. 2024. doi: 10.1145/3638529.3653990 (cit. on pp. 5, 81).

[41] J. Desterro, P. Bak-Gordon, and M. Carmo-Fonseca, “Targeting mRNA processing as an
anticancer strategy,” Nat Rev Drug Discov, vol. 19, no. 2, pp. 112–129, Feb. 2020. doi:
10.1038/s41573-019-0042-3 (cit. on pp. 8, 10, 11).

[42] S. Jeong, “SR Proteins: Binders, Regulators, and Connectors of RNA,” Mol Cells, vol. 40,
no. 1, pp. 1–9, Jan. 2017. doi: 10.14348/molcells.2017.2319 (cit. on pp. 8, 71).

[43] X.-D. Fu and M. Ares, “Context-dependent control of alternative splicing by
RNA-binding proteins,” Nat Rev Genet, vol. 15, no. 10, pp. 689–701, Oct. 2014. doi:
10.1038/nrg3778 (cit. on pp. 8, 10, 62, 71, 74, 78).

[44] M. C. Wahl, C. L. Will, and R. Lührmann, “The Spliceosome: Design Principles of a
Dynamic RNP Machine,” Cell, vol. 136, no. 4, pp. 701–718, Feb. 2009. doi: 10.1016/j.
cell.2009.02.009 (cit. on p. 7).

[45] J. Chen and W. A. Weiss, “Alternative splicing in cancer: Implications for biology and
therapy,” Oncogene, vol. 34, no. 1, pp. 1–14, Jan. 2015. doi: 10.1038/onc.2013.570
(cit. on p. 9).

[46] J. Ule and B. J. Blencowe, “Alternative Splicing Regulatory Networks: Functions,
Mechanisms, and Evolution,” Molecular Cell, vol. 76, no. 2, pp. 329–345, Oct. 2019.
doi: 10.1016/j.molcel.2019.09.017 (cit. on pp. 10, 11, 79).

[47] S. Erkelenz et al., “Position-dependent splicing activation and repression by SR and
hnRNP proteins rely on common mechanisms,” RNA, vol. 19, no. 1, pp. 96–102, Jan.
2013. doi: 10.1261/rna.037044.112 (cit. on pp. 10, 71).

[48] M. B. Warf and J. A. Berglund, “The role of RNA structure in regulating pre-mRNA
splicing,” Trends Biochem Sci, vol. 35, no. 3, pp. 169–178, Mar. 2010. doi: 10.1016/j.
tibs.2009.10.004 (cit. on p. 10).

[49] T. W. Nilsen and B. R. Graveley, “Expansion of the eukaryotic proteome by alternative
splicing,” Nature, vol. 463, no. 7280, pp. 457–463, Jan. 2010. doi: 10.1038/nature08909
(cit. on p. 10).

[50] C. Iannone and J. Valcárcel, “Chromatin’s thread to alternative splicing regulation,”
Chromosoma, vol. 122, no. 6, pp. 465–474, Dec. 2013. doi: 10.1007/s00412-013-0425-
x (cit. on p. 10).

125

https://doi.org/10.1145/3638529.3653990
https://doi.org/10.1038/s41573-019-0042-3
https://doi.org/10.14348/molcells.2017.2319
https://doi.org/10.1038/nrg3778
https://doi.org/10.1016/j.cell.2009.02.009
https://doi.org/10.1016/j.cell.2009.02.009
https://doi.org/10.1038/onc.2013.570
https://doi.org/10.1016/j.molcel.2019.09.017
https://doi.org/10.1261/rna.037044.112
https://doi.org/10.1016/j.tibs.2009.10.004
https://doi.org/10.1016/j.tibs.2009.10.004
https://doi.org/10.1038/nature08909
https://doi.org/10.1007/s00412-013-0425-x
https://doi.org/10.1007/s00412-013-0425-x


[51] B. S. Zhao, I. A. Roundtree, and C. He, “Post-transcriptional gene regulation by mRNA
modifications,” Nat Rev Mol Cell Biol, vol. 18, no. 1, pp. 31–42, Jan. 2017. doi: 10.
1038/nrm.2016.132 (cit. on p. 10).

[52] G.-S. Wang and T. A. Cooper, “Splicing in disease: Disruption of the splicing code and
the decoding machinery,” Nat Rev Genet, vol. 8, no. 10, pp. 749–761, Oct. 2007. doi:
10.1038/nrg2164 (cit. on p. 10).

[53] K. H. Lim, L. Ferraris, M. E. Filloux, B. J. Raphael, and W. G. Fairbrother, “Using
positional distribution to identify splicing elements and predict pre-mRNA processing
defects in human genes,” Proceedings of the National Academy of Sciences, vol. 108,
no. 27, pp. 11 093–11 098, Jul. 2011. doi: 10.1073/pnas.1101135108 (cit. on p. 10).

[54] M. J. Landrum et al., “ClinVar: Improving access to variant interpretations and
supporting evidence,” Nucleic Acids Research, vol. 46, no. D1, pp. D1062–D1067, Jan.
2018. doi: 10.1093/nar/gkx1153 (cit. on p. 10).

[55] P. D. Stenson et al., “The Human Gene Mutation Database (HGMD®): Optimizing its use
in a clinical diagnostic or research setting,” Hum Genet, vol. 139, no. 10, pp. 1197–1207,
2020. doi: 10.1007/s00439-020-02199-3 (cit. on p. 10).

[56] J. Lord et al., “Pathogenicity and selective constraint on variation near splice sites,”
Genome Res., vol. 29, no. 2, pp. 159–170, Feb. 2019. doi: 10.1101/gr.238444.118
(cit. on p. 11).

[57] A. J. M. Blakes et al., “A systematic analysis of splicing variants identifies new diagnoses
in the 100,000 Genomes Project,” Genome Medicine, vol. 14, no. 1, p. 79, Jul. 2022. doi:
10.1186/s13073-022-01087-x (cit. on p. 11).

[58] C. R. Sibley, L. Blazquez, and J. Ule, “Lessons from non-canonical splicing,” Nat Rev
Genet, vol. 17, no. 7, pp. 407–421, Jul. 2016. doi: 10.1038/nrg.2016.46 (cit. on pp. 11,
153).

[59] R. Vaz-Drago, N. Custódio, and M. Carmo-Fonseca, “Deep intronic mutations and human
disease,” Hum Genet, vol. 136, no. 9, pp. 1093–1111, Sep. 2017. doi: 10.1007/s00439-
017-1809-4 (cit. on pp. 11, 41, 42, 44, 152, 155, 159).

[60] N. P. Keegan, S. D. Wilton, and S. Fletcher, “Analysis of Pathogenic Pseudoexons Reveals
Novel Mechanisms Driving Cryptic Splicing,” Frontiers in Genetics, vol. 12, 2022 (cit. on
pp. 11, 34, 44).

[61] J. M. Ellingford et al., “Recommendations for clinical interpretation of variants found in
non-coding regions of the genome,” Genome Med, vol. 14, no. 1, p. 73, Jul. 2022. doi:
10.1186/s13073-022-01073-3 (cit. on p. 12).

126

https://doi.org/10.1038/nrm.2016.132
https://doi.org/10.1038/nrm.2016.132
https://doi.org/10.1038/nrg2164
https://doi.org/10.1073/pnas.1101135108
https://doi.org/10.1093/nar/gkx1153
https://doi.org/10.1007/s00439-020-02199-3
https://doi.org/10.1101/gr.238444.118
https://doi.org/10.1186/s13073-022-01087-x
https://doi.org/10.1038/nrg.2016.46
https://doi.org/10.1007/s00439-017-1809-4
https://doi.org/10.1007/s00439-017-1809-4
https://doi.org/10.1186/s13073-022-01073-3


[62] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, May 2015. doi: 10.1038/nature14539 (cit. on p. 13).

[63] M. Abadi et al., TensorFlow: A system for large-scale machine learning, May 2016. doi:
10.48550/arXiv.1605.08695. arXiv: 1605.08695 [cs] (cit. on p. 13).

[64] A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library,
Dec. 2019. doi: 10.48550/arXiv.1912.01703. arXiv: 1912.01703 [cs, stat] (cit. on
p. 13).

[65] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Advances in Neural Information Processing Systems,
vol. 25, Curran Associates, Inc., 2012 (cit. on p. 14).

[66] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep Learning
for Computer Vision: A Brief Review,” Computational Intelligence and Neuroscience,
vol. 2018, p. 7 068 349, Feb. 2018. doi: 10.1155/2018/7068349 (cit. on p. 14).

[67] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information
Processing Systems, vol. 30, Curran Associates, Inc., 2017 (cit. on p. 14).

[68] S. Islam et al., “A comprehensive survey on applications of transformers for deep learning
tasks,” Expert Systems with Applications, vol. 241, p. 122 666, May 2024. doi: 10.1016/
j.eswa.2023.122666 (cit. on p. 14).

[69] H. Wang et al., “Scientific discovery in the age of artificial intelligence,” Nature, vol. 620,
no. 7972, pp. 47–60, Aug. 2023. doi: 10.1038/s41586-023-06221-2 (cit. on p. 14).

[70] S. E. Whang, Y. Roh, H. Song, and J.-G. Lee, “Data collection and quality challenges
in deep learning: A data-centric AI perspective,” The VLDB Journal, vol. 32, no. 4,
pp. 791–813, Jul. 2023. doi: 10.1007/s00778-022-00775-9 (cit. on p. 14).

[71] M. Pandey et al., “The transformational role of GPU computing and deep learning in
drug discovery,” Nature Machine Intelligence, vol. 4, no. 3, pp. 211–221, Mar. 2022. doi:
10.1038/s42256-022-00463-x (cit. on p. 14).

[72] M. Krenn et al., “On scientific understanding with artificial intelligence,” Nature Reviews
Physics, vol. 4, no. 12, pp. 761–769, Dec. 2022. doi: 10.1038/s42254-022-00518-3
(cit. on p. 14).

[73] A. Maslova et al., “Deep learning of immune cell differentiation,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 117, no. 41,
pp. 25 655–25 666, Oct. 2020. doi: 10.1073/pnas.2011795117 (cit. on p. 14).

[74] S. Ruder, An overview of gradient descent optimization algorithms, Jun. 2017. arXiv:
1609.04747 [cs] (cit. on p. 15).

127

https://doi.org/10.1038/nature14539
https://doi.org/10.48550/arXiv.1605.08695
https://arxiv.org/abs/1605.08695
https://doi.org/10.48550/arXiv.1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1016/j.eswa.2023.122666
https://doi.org/10.1016/j.eswa.2023.122666
https://doi.org/10.1038/s41586-023-06221-2
https://doi.org/10.1007/s00778-022-00775-9
https://doi.org/10.1038/s42256-022-00463-x
https://doi.org/10.1038/s42254-022-00518-3
https://doi.org/10.1073/pnas.2011795117
https://arxiv.org/abs/1609.04747


[75] D. E. Rumelhart, J. L. McClelland, and P. R. Group, Parallel Distributed Processing,
Volume 1: Explorations in the Microstructure of Cognition: Foundations. The MIT Press,
Jul. 1986. doi: 10.7551/mitpress/5236.001.0001 (cit. on p. 15).

[76] G. Eraslan, Ž. Avsec, J. Gagneur, and F. J. Theis, “Deep learning: New computational
modelling techniques for genomics,” Nature Reviews Genetics, vol. 20, no. 7, pp. 389–403,
Jul. 2019. doi: 10.1038/s41576-019-0122-6 (cit. on pp. 17, 30).

[77] F. Yu and V. Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, Apr.
2016. arXiv: 1511.07122 [cs] (cit. on p. 16).

[78] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A
Simple Way to Prevent Neural Networks from Overfitting,” Journal of Machine Learning
Research, vol. 15, no. 56, pp. 1929–1958, 2014 (cit. on p. 17).

[79] S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, Mar. 2015. doi: 10.48550/arXiv.1502.03167. arXiv:
1502.03167 [cs] (cit. on p. 17).

[80] D. R. Kelley, J. Snoek, and J. L. Rinn, “Basset: Learning the regulatory code of the
accessible genome with deep convolutional neural networks,” Genome Research, vol. 26,
no. 7, pp. 990–999, Jul. 2016. doi: 10.1101/gr.200535.115 (cit. on pp. 18, 20).

[81] P. K. Koo and M. Ploenzke, “Improving representations of genomic sequence motifs in
convolutional networks with exponential activations,” Nature machine intelligence, vol. 3,
no. 3, pp. 258–266, Mar. 2021. doi: 10.1038/s42256-020-00291-x (cit. on p. 18).

[82] Ž. Avsec et al., “The Kipoi repository accelerates community exchange and reuse of
predictive models for genomics,” Nature Biotechnology, vol. 37, no. 6, pp. 592–600, 2019.
doi: 10.1038/s41587-019-0140-0 (cit. on pp. 19, 31, 34, 55, 154).

[83] C. B. Azodi, J. Tang, and S.-H. Shiu, “Opening the Black Box: Interpretable Machine
Learning for Geneticists,” Trends in Genetics, vol. 36, no. 6, pp. 442–455, Jun. 2020. doi:
10.1016/j.tig.2020.03.005 (cit. on p. 19).

[84] K. Simonyan, A. Vedaldi, and A. Zisserman, Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps, Apr. 2014. doi: 10.48550/
arXiv.1312.6034. arXiv: 1312.6034 [cs] (cit. on p. 19).

[85] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje, Not Just a Black Box:
Learning Important Features Through Propagating Activation Differences, Apr. 2017.
arXiv: 1605.01713 [cs] (cit. on p. 19).

128

https://doi.org/10.7551/mitpress/5236.001.0001
https://doi.org/10.1038/s41576-019-0122-6
https://arxiv.org/abs/1511.07122
https://doi.org/10.48550/arXiv.1502.03167
https://arxiv.org/abs/1502.03167
https://doi.org/10.1101/gr.200535.115
https://doi.org/10.1038/s42256-020-00291-x
https://doi.org/10.1038/s41587-019-0140-0
https://doi.org/10.1016/j.tig.2020.03.005
https://doi.org/10.48550/arXiv.1312.6034
https://doi.org/10.48550/arXiv.1312.6034
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1605.01713


[86] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Networks,”
in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,
Eds., Cham: Springer International Publishing, 2014, pp. 818–833. doi: 10.1007/978-
3-319-10590-1_53 (cit. on p. 19).

[87] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, Striving for Simplicity:
The All Convolutional Net, Apr. 2015. doi: 10.48550/arXiv.1412.6806. arXiv: 1412.
6806 [cs] (cit. on p. 19).

[88] A. Shrikumar, P. Greenside, and A. Kundaje, Learning Important Features Through
Propagating Activation Differences, Oct. 2019. arXiv: 1704.02685 [cs] (cit. on p. 20).

[89] S. Lundberg and S.-I. Lee, A Unified Approach to Interpreting Model Predictions, Nov.
2017. doi: 10.48550/arXiv.1705.07874. arXiv: 1705.07874 [cs, stat] (cit. on p. 20).

[90] A. Shrikumar et al., Technical Note on Transcription Factor Motif Discovery from
Importance Scores (TF-MoDISco) version 0.5.6.5, Apr. 2020. doi: 10.48550/arXiv.
1811.00416. arXiv: 1811.00416 [cs, q-bio, stat] (cit. on p. 20).

[91] P. Greenside, T. Shimko, P. Fordyce, and A. Kundaje, “Discovering epistatic feature
interactions from neural network models of regulatory DNA sequences,” Bioinformatics,
vol. 34, no. 17, pp. i629–i637, Sep. 2018. doi: 10.1093/bioinformatics/bty575 (cit. on
p. 21).

[92] S. Toneyan and P. K. Koo, “Interpreting cis-regulatory interactions from large-scale deep
neural networks,” Nature Genetics, pp. 1–11, Sep. 2024. doi: 10.1038/s41588-024-
01923-3 (cit. on p. 21).

[93] J. Ma et al., “Using deep learning to model the hierarchical structure and function of a
cell,” Nature Methods, vol. 15, no. 4, pp. 290–298, Apr. 2018. doi: 10.1038/nmeth.4627
(cit. on p. 21).

[94] H. A. Elmarakeby et al., “Biologically informed deep neural network for prostate cancer
discovery,” Nature, vol. 598, no. 7880, pp. 348–352, Oct. 2021. doi: 10.1038/s41586-
021-03922-4 (cit. on p. 21).

[95] D. Quang and X. Xie, “DanQ: A hybrid convolutional and recurrent deep neural network
for quantifying the function of DNA sequences,” Nucleic Acids Research, vol. 44, no. 11,
e107, Jun. 2016. doi: 10.1093/nar/gkw226 (cit. on p. 21).

[96] A. T. Balcı, M. M. Ebeid, P. V. Benos, D. Kostka, and M. Chikina, “An
intrinsically interpretable neural network architecture for sequence-to-function learning,”
Bioinformatics, vol. 39, no. Supplement_1, pp. i413–i422, Jun. 2023. doi: 10.1093/
bioinformatics/btad271 (cit. on p. 21).

129

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.48550/arXiv.1412.6806
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1704.02685
https://doi.org/10.48550/arXiv.1705.07874
https://arxiv.org/abs/1705.07874
https://doi.org/10.48550/arXiv.1811.00416
https://doi.org/10.48550/arXiv.1811.00416
https://arxiv.org/abs/1811.00416
https://doi.org/10.1093/bioinformatics/bty575
https://doi.org/10.1038/s41588-024-01923-3
https://doi.org/10.1038/s41588-024-01923-3
https://doi.org/10.1038/nmeth.4627
https://doi.org/10.1038/s41586-021-03922-4
https://doi.org/10.1038/s41586-021-03922-4
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1093/bioinformatics/btad271
https://doi.org/10.1093/bioinformatics/btad271


[97] S. E. Liao, M. Sudarshan, and O. Regev, “Deciphering RNA splicing logic with
interpretable machine learning,” Proceedings of the National Academy of Sciences,
vol. 120, no. 41, e2221165120, Oct. 2023. doi: 10.1073/pnas.2221165120 (cit. on p. 21).

[98] R. Agarwal et al., Neural Additive Models: Interpretable Machine Learning with Neural
Nets, Oct. 2021. arXiv: 2004.13912 [cs, stat] (cit. on p. 22).

[99] C. Molnar, Interpretable Machine Learning. 2019 (cit. on p. 22).

[100] D. Alvarez-Melis and T. S. Jaakkola, On the Robustness of Interpretability Methods, Jun.
2018. arXiv: 1806.08049 [cs, stat] (cit. on p. 22).

[101] A. Tareen, M. Kooshkbaghi, A. Posfai, W. T. Ireland, D. M. McCandlish, and J. B.
Kinney, “MAVE-NN: Learning genotype-phenotype maps from multiplex assays of variant
effect,” Genome Biology, vol. 23, no. 1, p. 98, Apr. 2022. doi: 10.1186/s13059-022-
02661-7 (cit. on p. 22).

[102] B. Wang, W. Pei, B. Xue, and M. Zhang, “Evolving local interpretable model-agnostic
explanations for deep neural networks in image classification,” in Proceedings of the
Genetic and Evolutionary Computation Conference Companion, ser. GECCO ’21, New
York, NY, USA: Association for Computing Machinery, Jul. 2021, pp. 173–174. doi:
10.1145/3449726.3459452 (cit. on p. 22).

[103] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA, USA: MIT Press, 1992 (cit. on pp. 23, 83).

[104] P. A. Whigham, “Grammatically-based genetic programming,” in Proceedings of the
Workshop on Genetic Programming: From Theory to Real-World Applications, J. P.
Rosca, Ed., Tahoe City, California, USA, Sep. 1995, pp. 33–41 (cit. on pp. 23, 85).

[105] D. Deshpande et al., “RNA-seq data science: From raw data to effective interpretation,”
Frontiers in Genetics, vol. 14, p. 997 383, Mar. 2023. doi: 10.3389/fgene.2023.997383
(cit. on p. 24).

[106] T. Steijger et al., “Assessment of transcript reconstruction methods for RNA-seq,” Nature
Methods, vol. 10, no. 12, pp. 1177–1184, Dec. 2013. doi: 10.1038/nmeth.2714 (cit. on
p. 24).

[107] A. Roberts, C. Trapnell, J. Donaghey, J. L. Rinn, and L. Pachter, “Improving RNA-Seq
expression estimates by correcting for fragment bias,” Genome Biology, vol. 12, no. 3,
R22, Mar. 2011. doi: 10.1186/gb-2011-12-3-r22 (cit. on p. 24).

[108] S. Shen et al., “rMATS: Robust and flexible detection of differential alternative splicing
from replicate RNA-Seq data,” Proceedings of the National Academy of Sciences, vol. 111,
no. 51, E5593–E5601, Dec. 2014. doi: 10.1073/pnas.1419161111 (cit. on pp. 24, 58).

130

https://doi.org/10.1073/pnas.2221165120
https://arxiv.org/abs/2004.13912
https://arxiv.org/abs/1806.08049
https://doi.org/10.1186/s13059-022-02661-7
https://doi.org/10.1186/s13059-022-02661-7
https://doi.org/10.1145/3449726.3459452
https://doi.org/10.3389/fgene.2023.997383
https://doi.org/10.1038/nmeth.2714
https://doi.org/10.1186/gb-2011-12-3-r22
https://doi.org/10.1073/pnas.1419161111


[109] J. Vaquero-Garcia et al., “A new view of transcriptome complexity and regulation through
the lens of local splicing variations,” eLife, vol. 5, J. Valcárcel, Ed., e11752, Feb. 2016.
doi: 10.7554/eLife.11752 (cit. on p. 24).

[110] M. Ascensão-Ferreira, R. Martins-Silva, N. Saraiva-Agostinho, and N. L. Barbosa-Morais,
“betAS: Intuitive analysis and visualization of differential alternative splicing using beta
distributions,” RNA (New York, N.Y.), vol. 30, no. 4, pp. 337–353, Mar. 2024. doi:
10.1261/rna.079764.123 (cit. on p. 24).

[111] J. Ule, K. Jensen, A. Mele, and R. B. Darnell, “CLIP: A method for identifying
protein-RNA interaction sites in living cells,” Methods (San Diego, Calif.), vol. 37, no. 4,
pp. 376–386, Dec. 2005. doi: 10.1016/j.ymeth.2005.07.018 (cit. on p. 24).

[112] E. L. Van Nostrand et al., “Robust transcriptome-wide discovery of RNA-binding protein
binding sites with enhanced CLIP (eCLIP),” Nature Methods, vol. 13, no. 6, pp. 508–514,
Jun. 2016. doi: 10.1038/nmeth.3810 (cit. on p. 24).

[113] E. L. Van Nostrand et al., “A large-scale binding and functional map of human
RNA-binding proteins,” Nature, vol. 583, no. 7818, pp. 711–719, Jul. 2020. doi: 10.
1038/s41586-020-2077-3 (cit. on pp. 24, 57, 58, 71, 75, 95, 97).

[114] G. Yeo and C. B. Burge, “Maximum entropy modeling of short sequence motifs with
applications to RNA splicing signals,” Journal of Computational Biology, vol. 11, no. 2-3,
pp. 377–394, Mar. 2004. doi: 10.1089/1066527041410418 (cit. on pp. 25, 31, 33).

[115] F.-O. Desmet, D. Hamroun, M. Lalande, G. Collod-Béroud, M. Claustres, and C. Béroud,
“Human Splicing Finder: An online bioinformatics tool to predict splicing signals,”
Nucleic Acids Research, vol. 37, no. 9, e67, May 2009. doi: 10.1093/nar/gkp215 (cit. on
p. 25).

[116] M. M. Yin and J. T. L. Wang, “Effective hidden Markov models for detecting splicing
junction sites in DNA sequences,” Information Sciences, Bioinformatics, vol. 139, no. 1,
pp. 139–163, Nov. 2001. doi: 10.1016/S0020-0255(01)00160-8 (cit. on p. 25).

[117] E. Pashaei, M. Ozen, and N. Aydin, “Splice site identification in human genome using
random forest,” Health and Technology, vol. 7, no. 1, pp. 141–152, Mar. 2017. doi: 10.
1007/s12553-016-0157-z (cit. on p. 25).

[118] S. Ke et al., “Quantitative evaluation of all hexamers as exonic splicing elements,”
Genome Res., vol. 21, no. 8, pp. 1360–1374, Aug. 2011. doi: 10.1101/gr.119628.110
(cit. on pp. 25, 32, 35, 46).

131

https://doi.org/10.7554/eLife.11752
https://doi.org/10.1261/rna.079764.123
https://doi.org/10.1016/j.ymeth.2005.07.018
https://doi.org/10.1038/nmeth.3810
https://doi.org/10.1038/s41586-020-2077-3
https://doi.org/10.1038/s41586-020-2077-3
https://doi.org/10.1089/1066527041410418
https://doi.org/10.1093/nar/gkp215
https://doi.org/10.1016/S0020-0255(01)00160-8
https://doi.org/10.1007/s12553-016-0157-z
https://doi.org/10.1007/s12553-016-0157-z
https://doi.org/10.1101/gr.119628.110


[119] A. B. Rosenberg, R. P. Patwardhan, J. Shendure, and G. Seelig, “Learning the sequence
determinants of alternative splicing from millions of random sequences,” Cell, vol. 163,
no. 3, pp. 698–711, Oct. 2015. doi: 10.1016/j.cell.2015.09.054 (cit. on pp. 25, 27,
31, 33, 75).

[120] R. Wang, Z. Wang, J. Wang, and S. Li, “SpliceFinder: Ab initio prediction of splice sites
using convolutional neural network,” BMC bioinformatics, vol. 20, no. Suppl 23, p. 652,
Dec. 2019. doi: 10.1186/s12859-019-3306-3 (cit. on p. 25).

[121] Y. Zhang, X. Liu, J. MacLeod, and J. Liu, “Discerning novel splice junctions derived
from RNA-seq alignment: A deep learning approach,” BMC Genomics, vol. 19, no. 1,
p. 971, Dec. 2018. doi: 10.1186/s12864-018-5350-1 (cit. on p. 25).

[122] T. Naito, “Predicting the impact of single nucleotide variants on splicing via
sequence-based deep neural networks and genomic features,” Human Mutation,
humu.23794, May 2019. doi: 10.1002/humu.23794 (cit. on pp. 25, 32, 35).

[123] J. Zuallaert, F. Godin, M. Kim, A. Soete, Y. Saeys, and W. De Neve, “SpliceRover:
Interpretable convolutional neural networks for improved splice site prediction,”
Bioinformatics (Oxford, England), vol. 34, no. 24, pp. 4180–4188, Dec. 2018. doi: 10.
1093/bioinformatics/bty497 (cit. on pp. 25, 32, 35, 46).

[124] N. Scalzitti et al., “Spliceator: Multi-species splice site prediction using convolutional
neural networks,” BMC Bioinformatics, vol. 22, no. 1, p. 561, Nov. 2021. doi: 10.1186/
s12859-021-04471-3 (cit. on pp. 25, 32, 35, 46).

[125] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2016, pp. 770–778. doi: 10.1109/CVPR.2016.90 (cit. on p. 25).

[126] A. Frankish et al., “GENCODE reference annotation for the human and mouse genomes,”
Nucleic Acids Research, vol. 47, no. D1, pp. D766–D773, Jan. 2019. doi: 10.1093/nar/
gky955 (cit. on pp. 25, 30).

[127] J. Lonsdale et al., “The Genotype-Tissue Expression (GTEx) project,” Nat Genet, vol. 45,
no. 6, pp. 580–585, Jun. 2013. doi: 10.1038/ng.2653 (cit. on pp. 25, 34, 45).

[128] K.-H. Chao, A. Mao, S. L. Salzberg, and M. Pertea, “Splam: A deep-learning-based splice
site predictor that improves spliced alignments,” Genome Biology, vol. 25, no. 1, p. 243,
Sep. 2024. doi: 10.1186/s13059-024-03379-4 (cit. on p. 25).

[129] A. Corvelo, M. Hallegger, C. W. J. Smith, and E. Eyras, “Genome-Wide Association
between Branch Point Properties and Alternative Splicing,” PLOS Computational
Biology, vol. 6, no. 11, e1001016, Nov. 2010. doi: 10.1371/journal.pcbi.1001016
(cit. on pp. 26, 32, 35, 44).

132

https://doi.org/10.1016/j.cell.2015.09.054
https://doi.org/10.1186/s12859-019-3306-3
https://doi.org/10.1186/s12864-018-5350-1
https://doi.org/10.1002/humu.23794
https://doi.org/10.1093/bioinformatics/bty497
https://doi.org/10.1093/bioinformatics/bty497
https://doi.org/10.1186/s12859-021-04471-3
https://doi.org/10.1186/s12859-021-04471-3
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1038/ng.2653
https://doi.org/10.1186/s13059-024-03379-4
https://doi.org/10.1371/journal.pcbi.1001016


[130] Q. Zhang, X. Fan, Y. Wang, M.-a. Sun, J. Shao, and D. Guo, “BPP: A sequence-based
algorithm for branch point prediction,” Bioinformatics, vol. 33, no. 20, pp. 3166–3172,
Oct. 2017. doi: 10.1093/bioinformatics/btx401 (cit. on pp. 26, 32, 35, 44).

[131] P. Zhang et al., “Genome-wide detection of human variants that disrupt intronic
branchpoints,” Proceedings of the National Academy of Sciences, vol. 119, no. 44,
e2211194119, Nov. 2022. doi: 10.1073/pnas.2211194119 (cit. on pp. 26, 35, 43, 44,
152).

[132] J. M. Paggi and G. Bejerano, “A sequence-based, deep learning model accurately predicts
RNA splicing branchpoints,” RNA, vol. 24, no. 12, pp. 1647–1658, Dec. 2018. doi: 10.
1261/rna.066290.118 (cit. on pp. 26, 35, 44).

[133] H. Bretschneider, S. Gandhi, A. G. Deshwar, K. Zuberi, and B. J. Frey,
“COSSMO: Predicting competitive alternative splice site selection using deep learning,”
Bioinformatics, vol. 34, no. 13, pp. i429–i437, Jul. 2018. doi: 10.1093/bioinformatics/
bty244 (cit. on p. 27).

[134] J. Cheng et al., “MMSplice: Modular modeling improves the predictions of genetic variant
effects on splicing,” Genome Biology, vol. 20, no. 1, p. 48, Mar. 2019. doi: 10.1186/
s13059-019-1653-z (cit. on pp. 27, 31, 34).

[135] Y. Barash et al., “Deciphering the splicing code,” Nature, vol. 465, no. 7294, pp. 53–59,
May 2010. doi: 10.1038/nature09000 (cit. on p. 27).

[136] H. Y. Xiong, Y. Barash, and B. J. Frey, “Bayesian prediction of tissue-regulated splicing
using RNA sequence and cellular context,” Bioinformatics, vol. 27, no. 18, pp. 2554–2562,
Sep. 2011. doi: 10.1093/bioinformatics/btr444 (cit. on p. 27).

[137] M. K. K. Leung, H. Y. Xiong, L. J. Lee, and B. J. Frey, “Deep learning of the
tissue-regulated splicing code,” Bioinformatics, vol. 30, no. 12, pp. i121–i129, Jun. 2014.
doi: 10.1093/bioinformatics/btu277 (cit. on p. 27).

[138] H. Y. Xiong et al., “The human splicing code reveals new insights into the genetic
determinants of disease,” Science (New York, N.Y.), vol. 347, no. 6218, 2015. doi:
10.1126/science.1254806 (cit. on pp. 27, 31, 33).

[139] A. Jha, M. R. Gazzara, and Y. Barash, “Integrative deep models for alternative splicing,”
Bioinformatics, vol. 33, no. 14, pp. i274–i282, Jul. 2017. doi: 10.1093/bioinformatics/
btx268 (cit. on p. 27).

[140] J. Cheng, M. H. Çelik, A. Kundaje, and J. Gagneur, “MTSplice predicts effects of genetic
variants on tissue-specific splicing,” Genome Biology, vol. 22, no. 1, p. 94, Mar. 2021. doi:
10.1186/s13059-021-02273-7 (cit. on p. 28).

133

https://doi.org/10.1093/bioinformatics/btx401
https://doi.org/10.1073/pnas.2211194119
https://doi.org/10.1261/rna.066290.118
https://doi.org/10.1261/rna.066290.118
https://doi.org/10.1093/bioinformatics/bty244
https://doi.org/10.1093/bioinformatics/bty244
https://doi.org/10.1186/s13059-019-1653-z
https://doi.org/10.1186/s13059-019-1653-z
https://doi.org/10.1038/nature09000
https://doi.org/10.1093/bioinformatics/btr444
https://doi.org/10.1093/bioinformatics/btu277
https://doi.org/10.1126/science.1254806
https://doi.org/10.1093/bioinformatics/btx268
https://doi.org/10.1093/bioinformatics/btx268
https://doi.org/10.1186/s13059-021-02273-7


[141] T. Zeng and Y. I. Li, “Predicting RNA splicing from DNA sequence using Pangolin,”
Genome Biology, vol. 23, no. 1, p. 103, Apr. 2022. doi: 10.1186/s13059-022-02664-4
(cit. on pp. 28, 30, 34, 102).

[142] N. Wagner et al., “Aberrant splicing prediction across human tissues,” Nature Genetics,
vol. 55, no. 5, pp. 861–870, May 2023. doi: 10.1038/s41588-023-01373-3 (cit. on
pp. 28, 30, 34, 37, 53).

[143] D. N. Cooper, “Functional intronic polymorphisms: Buried treasure awaiting discovery
within our genes,” Hum Genomics, vol. 4, no. 5, pp. 284–288, Jun. 2010. doi: 10.1186/
1479-7364-4-5-284 (cit. on p. 30).

[144] M. Lek et al., “Analysis of protein-coding genetic variation in 60,706 humans,” Nature,
vol. 536, no. 7616, pp. 285–291, Aug. 2016. doi: 10.1038/nature19057 (cit. on p. 30).

[145] I. Dunham et al., “An integrated encyclopedia of DNA elements in the human genome,”
Nature, vol. 489, no. 7414, pp. 57–74, Sep. 2012. doi: 10.1038/nature11247 (cit. on
p. 30).

[146] M. J. Cormier, B. S. Pedersen, P. Bayrak-Toydemir, and A. R. Quinlan, “Combining
genetic constraint with predictions of alternative splicing to prioritize deleterious splicing
in rare disease studies,” BMC Bioinformatics, vol. 23, no. 1, p. 482, Nov. 2022. doi:
10.1186/s12859-022-05041-x (cit. on pp. 30, 34, 37).

[147] R. Kurosawa et al., “PDIVAS: Pathogenicity predictor for Deep-Intronic Variants causing
Aberrant Splicing,” BMC Genomics, vol. 24, no. 1, p. 601, Oct. 2023. doi: 10.1186/
s12864-023-09645-2 (cit. on pp. 30, 34, 37).

[148] Y. Strauch, J. Lord, M. Niranjan, and D. Baralle, “CI-SpliceAI—Improving machine
learning predictions of disease causing splicing variants using curated alternative splice
sites,” PLOS ONE, vol. 17, no. 6, e0269159, Jun. 2022. doi: 10.1371/journal.pone.
0269159 (cit. on pp. 30, 34).

[149] L. M. Weber et al., “Essential guidelines for computational method benchmarking,”
Genome Biology, vol. 20, no. 1, p. 125, Jun. 2019. doi: 10.1186/s13059-019-1738-8
(cit. on p. 30).

[150] S. Buchka, A. Hapfelmeier, P. P. Gardner, R. Wilson, and A.-L. Boulesteix, “On the
optimistic performance evaluation of newly introduced bioinformatic methods,” Genome
Biology, vol. 22, no. 1, p. 152, May 2021. doi: 10.1186/s13059-021-02365-4 (cit. on
p. 30).

[151] R. Leman et al., “Assessment of branch point prediction tools to predict physiological
branch points and their alteration by variants,” BMC Genomics, vol. 21, no. 1, p. 86,
Jan. 2020. doi: 10.1186/s12864-020-6484-5 (cit. on pp. 30, 35, 43, 44, 152).

134

https://doi.org/10.1186/s13059-022-02664-4
https://doi.org/10.1038/s41588-023-01373-3
https://doi.org/10.1186/1479-7364-4-5-284
https://doi.org/10.1186/1479-7364-4-5-284
https://doi.org/10.1038/nature19057
https://doi.org/10.1038/nature11247
https://doi.org/10.1186/s12859-022-05041-x
https://doi.org/10.1186/s12864-023-09645-2
https://doi.org/10.1186/s12864-023-09645-2
https://doi.org/10.1371/journal.pone.0269159
https://doi.org/10.1371/journal.pone.0269159
https://doi.org/10.1186/s13059-019-1738-8
https://doi.org/10.1186/s13059-021-02365-4
https://doi.org/10.1186/s12864-020-6484-5


[152] H. Tubeuf et al., “Large-scale comparative evaluation of user-friendly tools for predicting
variant-induced alterations of splicing regulatory elements,” Human Mutation, vol. 41,
no. 10, pp. 1811–1829, 2020. doi: 10.1002/humu.24091 (cit. on pp. 30, 35, 44).

[153] A. Moles-Fernández, J. Domènech-Vivó, A. Tenés, J. Balmaña, O. Diez, and S.
Gutiérrez-Enríquez, “Role of Splicing Regulatory Elements and In Silico Tools Usage
in the Identification of Deep Intronic Splicing Variants in Hereditary Breast/Ovarian
Cancer Genes,” Cancers (Basel), vol. 13, no. 13, p. 3341, Jul. 2021. doi: 10 . 3390 /
cancers13133341 (cit. on pp. 30, 44, 45, 53).

[154] T. V. Riepe, M. Khan, S. Roosing, F. P. M. Cremers, and P. A. C. ’t Hoen, “Benchmarking
deep learning splice prediction tools using functional splice assays,” Human Mutation,
vol. 42, no. 7, pp. 799–810, 2021. doi: 10.1002/humu.24212 (cit. on p. 30).

[155] C. Rowlands et al., “Comparison of in silico strategies to prioritize rare genomic variants
impacting RNA splicing for the diagnosis of genomic disorders,” Sci Rep, vol. 11, no. 1,
p. 20 607, Oct. 2021. doi: 10.1038/s41598-021-99747-2 (cit. on pp. 30, 89).

[156] C. Ha, J.-W. Kim, and J.-H. Jang, “Performance Evaluation of SpliceAI for the Prediction
of Splicing of NF1 Variants,” Genes, vol. 12, no. 9, p. 1308, Sep. 2021. doi: 10.3390/
genes12091308 (cit. on pp. 30, 89).

[157] K. Li et al., “Performance evaluation of differential splicing analysis methods and splicing
analytics platform construction,” Nucleic Acids Research, gkac686, Aug. 2022. doi: 10.
1093/nar/gkac686 (cit. on p. 30).

[158] R. Leman et al., “SPiP: Splicing Prediction Pipeline, a machine learning tool for massive
detection of exonic and intronic variant effects on mRNA splicing,” Human Mutation,
vol. 43, no. 12, pp. 2308–2323, 2022. doi: 10.1002/humu.24491 (cit. on pp. 30, 34).

[159] S. Li et al., “CAPICE: A computational method for Consequence-Agnostic Pathogenicity
Interpretation of Clinical Exome variations,” Genome Medicine, vol. 12, no. 1, p. 75, Aug.
2020. doi: 10.1186/s13073-020-00775-w (cit. on pp. 31, 33).

[160] X. Jian, E. Boerwinkle, and X. Liu, “In silico prediction of splice-altering single nucleotide
variants in the human genome,” Nucleic Acids Res, vol. 42, no. 22, pp. 13 534–13 544,
Dec. 2014. doi: 10.1093/nar/gku1206 (cit. on pp. 31, 33, 34).

[161] H. Liu et al., “Performance evaluation of computational methods for splice-disrupting
variants and improving the performance using the machine learning-based framework,”
Briefings in Bioinformatics, vol. 23, no. 5, bbac334, Aug. 2022. doi: 10.1093/bib/
bbac334 (cit. on pp. 31, 34, 37).

135

https://doi.org/10.1002/humu.24091
https://doi.org/10.3390/cancers13133341
https://doi.org/10.3390/cancers13133341
https://doi.org/10.1002/humu.24212
https://doi.org/10.1038/s41598-021-99747-2
https://doi.org/10.3390/genes12091308
https://doi.org/10.3390/genes12091308
https://doi.org/10.1093/nar/gkac686
https://doi.org/10.1093/nar/gkac686
https://doi.org/10.1002/humu.24491
https://doi.org/10.1186/s13073-020-00775-w
https://doi.org/10.1093/nar/gku1206
https://doi.org/10.1093/bib/bbac334
https://doi.org/10.1093/bib/bbac334


[162] K. A. Jagadeesh et al., “S-CAP extends pathogenicity prediction to genetic variants
that affect RNA splicing.,” Nature genetics, vol. 51, no. 4, pp. 755–763, Feb. 2019. doi:
10.1038/s41588-019-0348-4 (cit. on pp. 32–34).

[163] L. Cartegni, J. Wang, Z. Zhu, M. Q. Zhang, and A. R. Krainer, “ESEfinder: A web
resource to identify exonic splicing enhancers,” Nucleic Acids Res, vol. 31, no. 13,
pp. 3568–3571, Jul. 2003. doi: 10.1093/nar/gkg616 (cit. on pp. 32, 34, 46).

[164] S. Erkelenz, S. Theiss, M. Otte, M. Widera, J. O. Peter, and H. Schaal, “Genomic
HEXploring allows landscaping of novel potential splicing regulatory elements,” Nucleic
Acids Res, vol. 42, no. 16, pp. 10 681–10 697, 2014. doi: 10.1093/nar/gku736 (cit. on
pp. 32, 35, 46).

[165] B. J. Livesey et al., Guidelines for releasing a variant effect predictor, Apr. 2024. doi:
10.48550/arXiv.2404.10807. arXiv: 2404.10807 [q-bio] (cit. on p. 32).

[166] A. Siepel et al., “Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes,” Genome Res., vol. 15, no. 8, pp. 1034–1050, Aug. 2005. doi: 10.1101/gr.
3715005 (cit. on pp. 33, 39).

[167] J. Li et al., “Performance evaluation of pathogenicity-computation methods for missense
variants,” Nucleic Acids Res, vol. 46, no. 15, pp. 7793–7804, Sep. 2018. doi: 10.1093/
nar/gky678 (cit. on p. 33).

[168] A. Siepel, K. S. Pollard, and D. Haussler, “New Methods for Detecting Lineage-Specific
Selection,” in Research in Computational Molecular Biology, A. Apostolico, C. Guerra, S.
Istrail, P. A. Pevzner, and M. Waterman, Eds., ser. Lecture Notes in Computer Science,
Berlin, Heidelberg: Springer, 2006, pp. 190–205. doi: 10.1007/11732990_17 (cit. on
p. 33).

[169] C. Dong et al., “Comparison and integration of deleteriousness prediction methods for
nonsynonymous SNVs in whole exome sequencing studies,” Hum Mol Genet, vol. 24,
no. 8, pp. 2125–2137, Apr. 2015. doi: 10.1093/hmg/ddu733 (cit. on p. 33).

[170] M. Garber, M. Guttman, M. Clamp, M. C. Zody, N. Friedman, and X. Xie, “Identifying
novel constrained elements by exploiting biased substitution patterns,” Bioinformatics,
vol. 25, no. 12, pp. i54–i62, Jun. 2009. doi: 10.1093/bioinformatics/btp190 (cit. on
p. 33).

[171] E. V. Davydov, D. L. Goode, M. Sirota, G. M. Cooper, A. Sidow, and S. Batzoglou,
“Identifying a High Fraction of the Human Genome to be under Selective Constraint
Using GERP++,” PLoS Comput Biol, vol. 6, no. 12, e1001025, Dec. 2010. doi: 10.
1371/journal.pcbi.1001025 (cit. on p. 33).

136

https://doi.org/10.1038/s41588-019-0348-4
https://doi.org/10.1093/nar/gkg616
https://doi.org/10.1093/nar/gku736
https://doi.org/10.48550/arXiv.2404.10807
https://arxiv.org/abs/2404.10807
https://doi.org/10.1101/gr.3715005
https://doi.org/10.1101/gr.3715005
https://doi.org/10.1093/nar/gky678
https://doi.org/10.1093/nar/gky678
https://doi.org/10.1007/11732990_17
https://doi.org/10.1093/hmg/ddu733
https://doi.org/10.1093/bioinformatics/btp190
https://doi.org/10.1371/journal.pcbi.1001025
https://doi.org/10.1371/journal.pcbi.1001025


[172] H. A. Shihab et al., “An integrative approach to predicting the functional effects of
non-coding and coding sequence variation,” Bioinformatics, vol. 31, no. 10, pp. 1536–1543,
May 2015. doi: 10.1093/bioinformatics/btv009 (cit. on p. 33).

[173] X. Liu, C. Wu, C. Li, and E. Boerwinkle, “dbNSFP v3.0: A One-Stop Database of
Functional Predictions and Annotations for Human Non-synonymous and Splice Site
SNVs,” Hum Mutat, vol. 37, no. 3, pp. 235–241, Mar. 2016. doi: 10.1002/humu.22932
(cit. on p. 33).

[174] 1000 Genomes Project Consortium et al., “A global reference for human genetic
variation,” Nature, vol. 526, no. 7571, pp. 68–74, Oct. 2015. doi: 10.1038/nature15393
(cit. on p. 33).

[175] I. Ionita-Laza, K. McCallum, B. Xu, and J. D. Buxbaum, “A spectral approach
integrating functional genomic annotations for coding and noncoding variants,” Nature
Genetics, vol. 48, no. 2, pp. 214–220, Feb. 2016. doi: 10.1038/ng.3477 (cit. on p. 33).

[176] D. Smedley et al., “A whole-genome analysis framework for effective identification of
pathogenic regulatory variants in mendelian disease,” The American Journal of Human
Genetics, vol. 99, no. 3, pp. 595–606, Sep. 2016. doi: 10.1016/j.ajhg.2016.07.005
(cit. on p. 33).

[177] Y.-F. Huang, B. Gulko, and A. Siepel, “Fast, scalable prediction of deleterious noncoding
variants from functional and population genomic data,” Nature Genetics, vol. 49, no. 4,
pp. 618–624, Apr. 2017. doi: 10.1038/ng.3810 (cit. on p. 33).

[178] I. F. A. C. Fokkema et al., “Dutch genome diagnostic laboratories accelerated and
improved variant interpretation and increased accuracy by sharing data,” Human
Mutation, vol. 40, no. 12, pp. 2230–2238, 2019. doi: 10 . 1002 / humu . 23896 (cit. on
p. 33).

[179] P. Rentzsch, M. Schubach, J. Shendure, and M. Kircher, “CADD-Splice—improving
genome-wide variant effect prediction using deep learning-derived splice scores,” Genome
Medicine, vol. 13, no. 1, p. 31, Feb. 2021. doi: 10.1186/s13073-021-00835-9 (cit. on
p. 33).

[180] J. Shamsani et al., “A plugin for the Ensembl Variant Effect Predictor that uses
MaxEntScan to predict variant spliceogenicity,” Bioinformatics, vol. 35, no. 13,
pp. 2315–2317, Jul. 2019. doi: 10.1093/bioinformatics/bty960 (cit. on p. 33).

[181] J. Wang, J. Zhang, K. Li, W. Zhao, and Q. Cui, “SpliceDisease database: Linking RNA
splicing and disease,” Nucleic Acids Res, vol. 40, no. Database issue, pp. D1055–1059,
Jan. 2012. doi: 10.1093/nar/gkr1171 (cit. on p. 33).

137

https://doi.org/10.1093/bioinformatics/btv009
https://doi.org/10.1002/humu.22932
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/ng.3477
https://doi.org/10.1016/j.ajhg.2016.07.005
https://doi.org/10.1038/ng.3810
https://doi.org/10.1002/humu.23896
https://doi.org/10.1186/s13073-021-00835-9
https://doi.org/10.1093/bioinformatics/bty960
https://doi.org/10.1093/nar/gkr1171


[182] S. Gelfman et al., “Annotating pathogenic non-coding variants in genic regions,” Nat
Commun, vol. 8, no. 1, p. 236, Aug. 2017. doi: 10.1038/s41467-017-00141-2 (cit. on
pp. 34, 39).

[183] D. Danis et al., “Interpretable prioritization of splice variants in diagnostic
next-generation sequencing,” Am J Hum Genet, vol. 108, no. 9, pp. 1564–1577, Sep.
2021. doi: 10.1016/j.ajhg.2021.06.014 (cit. on pp. 34, 39).

[184] S. T. Sherry et al., “dbSNP: The NCBI database of genetic variation,” Nucleic Acids
Research, vol. 29, no. 1, pp. 308–311, Jan. 2001. doi: 10.1093/nar/29.1.308 (cit. on
p. 34).

[185] J.-i. Takeda, S. Fukami, A. Tamura, A. Shibata, and K. Ohno, “IntSplice2: Prediction of
the Splicing Effects of Intronic Single-Nucleotide Variants Using LightGBM Modeling,”
Frontiers in Genetics, vol. 12, 2021. doi: 10.3389/fgene.2021.701076 (cit. on pp. 35,
44).

[186] R. Soemedi et al., “Pathogenic variants that alter protein code often disrupt splicing,”
Nat Genet, vol. 49, no. 6, pp. 848–855, Jun. 2017. doi: 10.1038/ng.3837 (cit. on p. 35).

[187] P. Barbosa, Preparing input for multiple splicing predictors,
https://github.com/PedroBarbosa/Prepare_SplicingPredictors, 2023 (cit. on p. 35).

[188] W. McLaren et al., “The Ensembl Variant Effect Predictor,” Genome Biology, vol. 17,
no. 1, p. 122, Jun. 2016. doi: 10.1186/s13059-016-0974-4 (cit. on pp. 36, 151).

[189] Y. Bromberg, R. Prabakaran, A. Kabir, and A. Shehu, “Variant Effect Prediction in the
Age of Machine Learning,” Cold Spring Harb Perspect Biol, a041467, Apr. 2024. doi:
10.1101/cshperspect.a041467 (cit. on p. 36).

[190] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011 (cit. on p. 37).

[191] D. G. Grimm et al., “The evaluation of tools used to predict the impact of missense
variants is hindered by two types of circularity.,” Human mutation, vol. 36, no. 5,
pp. 513–23, May 2015. doi: 10.1002/humu.22768 (cit. on p. 38).

[192] H. Jung, K. S. Lee, and J. K. Choi, “Comprehensive characterisation of intronic
mis-splicing mutations in human cancers,” Oncogene, vol. 40, no. 7, pp. 1347–1361, Feb.
2021. doi: 10.1038/s41388-020-01614-3 (cit. on pp. 42, 44).

[193] U. S. S. Petersen, T. K. Doktor, and B. S. Andresen, “Pseudoexon activation in disease
by non-splice site deep intronic sequence variation — wild type pseudoexons constitute
high-risk sites in the human genome,” Human Mutation, vol. 43, no. 2, pp. 103–127, 2022.
doi: 10.1002/humu.24306 (cit. on pp. 44, 52, 153).

138

https://doi.org/10.1038/s41467-017-00141-2
https://doi.org/10.1016/j.ajhg.2021.06.014
https://doi.org/10.1093/nar/29.1.308
https://doi.org/10.3389/fgene.2021.701076
https://doi.org/10.1038/ng.3837
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1101/cshperspect.a041467
https://doi.org/10.1002/humu.22768
https://doi.org/10.1038/s41388-020-01614-3
https://doi.org/10.1002/humu.24306


[194] S. I. Adamson, L. Zhan, and B. R. Graveley, “Vex-seq: High-throughput identification
of the impact of genetic variation on pre-mRNA splicing efficiency,” Genome Biology,
vol. 19, no. 1, p. 71, Jun. 2018. doi: 10.1186/s13059-018-1437-x (cit. on pp. 44, 153).

[195] R. Cheung et al., “A Multiplexed Assay for Exon Recognition Reveals that
an Unappreciated Fraction of Rare Genetic Variants Cause Large-Effect Splicing
Disruptions,” Mol Cell, vol. 73, no. 1, 183–194.e8, Jan. 2019. doi: 10.1016/j.molcel.
2018.10.037 (cit. on p. 44).

[196] R. Dawes et al., “SpliceVault predicts the precise nature of variant-associated
mis-splicing,” Nat Genet, vol. 55, no. 2, pp. 324–332, Feb. 2023. doi: 10.1038/s41588-
022-01293-8 (cit. on p. 49).

[197] S. Köhler et al., “The Human Phenotype Ontology in 2021,” Nucleic Acids Research,
vol. 49, no. D1, pp. D1207–D1217, Jan. 2021. doi: 10.1093/nar/gkaa1043 (cit. on
pp. 51, 157).

[198] S. Richards et al., “Standards and Guidelines for the Interpretation of Sequence Variants:
A Joint Consensus Recommendation of the American College of Medical Genetics and
Genomics and the Association for Molecular Pathology,” Genet Med, vol. 17, no. 5,
pp. 405–424, May 2015. doi: 10.1038/gim.2015.30 (cit. on p. 52).

[199] K. Schoch et al., “Alternative transcripts in variant interpretation: The potential for
missed diagnoses and misdiagnoses,” Genetics in Medicine, vol. 22, no. 7, pp. 1269–1275,
Jul. 2020. doi: 10.1038/s41436-020-0781-x (cit. on p. 52).

[200] D. Canson, D. Glubb, and A. B. Spurdle, “Variant effect on splicing regulatory
elements, branchpoint usage, and pseudoexonization: Strategies to enhance bioinformatic
prediction using hereditary cancer genes as exemplars,” Human Mutation, vol. 41, no. 10,
pp. 1705–1721, 2020. doi: 10.1002/humu.24074 (cit. on p. 53).

[201] L. Grodecká, E. Buratti, and T. Freiberger, “Mutations of Pre-mRNA Splicing Regulatory
Elements: Are Predictions Moving Forward to Clinical Diagnostics?” Int J Mol Sci,
vol. 18, no. 8, p. 1668, Jul. 2017. doi: 10.3390/ijms18081668 (cit. on p. 53).

[202] F. Gebauer, T. Schwarzl, J. Valcárcel, and M. W. Hentze, “RNA-binding proteins in
human genetic disease,” Nat Rev Genet, vol. 22, no. 3, pp. 185–198, Mar. 2021. doi:
10.1038/s41576-020-00302-y (cit. on pp. 53, 68).

[203] T. Ching et al., “Opportunities and obstacles for deep learning in biology and medicine,”
Journal of The Royal Society Interface, vol. 15, no. 141, p. 20 170 387, Apr. 2018. doi:
10.1098/rsif.2017.0387 (cit. on p. 53).

139

https://doi.org/10.1186/s13059-018-1437-x
https://doi.org/10.1016/j.molcel.2018.10.037
https://doi.org/10.1016/j.molcel.2018.10.037
https://doi.org/10.1038/s41588-022-01293-8
https://doi.org/10.1038/s41588-022-01293-8
https://doi.org/10.1093/nar/gkaa1043
https://doi.org/10.1038/gim.2015.30
https://doi.org/10.1038/s41436-020-0781-x
https://doi.org/10.1002/humu.24074
https://doi.org/10.3390/ijms18081668
https://doi.org/10.1038/s41576-020-00302-y
https://doi.org/10.1098/rsif.2017.0387


[204] J. K. Aicher, P. Jewell, J. Vaquero-Garcia, Y. Barash, and E. J. Bhoj, “Mapping
RNA splicing variations in clinically-accessible and non-accessible tissues to facilitate
Mendelian disease diagnosis using RNA-seq,” Genetics in medicine : official journal
of the American College of Medical Genetics, vol. 22, no. 7, p. 1181, Jul. 2020. doi:
10.1038/s41436-020-0780-y (cit. on p. 53).

[205] C. Smith and J. O. Kitzman, “Benchmarking splice variant prediction algorithms using
massively parallel splicing assays,” Genome Biology, vol. 24, no. 1, p. 294, Dec. 2023.
doi: 10.1186/s13059-023-03144-z (cit. on p. 54).

[206] J.-M. de Sainte Agathe et al., “SpliceAI-visual: A free online tool to improve SpliceAI
splicing variant interpretation,” Hum Genomics, vol. 17, p. 7, Feb. 2023. doi: 10.1186/
s40246-023-00451-1 (cit. on pp. 54, 89).

[207] T. Wolf et al., HuggingFace’s Transformers: State-of-the-art Natural Language Processing,
Jul. 2020. doi: 10.48550/arXiv.1910.03771. arXiv: 1910.03771 [cs] (cit. on p. 55).

[208] Ž. Avsec et al., “Effective gene expression prediction from sequence by integrating
long-range interactions,” Nat Methods, vol. 18, no. 10, pp. 1196–1203, Oct. 2021. doi:
10.1038/s41592-021-01252-x (cit. on p. 55).

[209] J. Meier, R. Rao, R. Verkuil, J. Liu, T. Sercu, and A. Rives, “Language models enable
zero-shot prediction of the effects of mutations on protein function,” in Advances in Neural
Information Processing Systems, vol. 34, Curran Associates, Inc., 2021, pp. 29 287–29 303
(cit. on p. 55).

[210] A. Frankish et al., “GENCODE 2021,” Nucleic Acids Research, vol. 49, no. D1,
pp. D916–D923, Jan. 2021. doi: 10.1093/nar/gkaa1087 (cit. on p. 58).

[211] M. Chen and J. L. Manley, “Mechanisms of alternative splicing regulation: Insights from
molecular and genomics approaches,” Nat Rev Mol Cell Biol, vol. 10, no. 11, pp. 741–754,
Nov. 2009. doi: 10.1038/nrm2777 (cit. on pp. 60, 80).

[212] P. Sheng, K. A. Flood, and M. Xie, “Short Hairpin RNAs for Strand-Specific Small
Interfering RNA Production,” Front. Bioeng. Biotechnol., vol. 8, Aug. 2020. doi: 10.
3389/fbioe.2020.00940 (cit. on p. 60).

[213] C. Y. Chan et al., “A structural interpretation of the effect of GC-content on efficiency
of RNA interference,” BMC Bioinformatics, vol. 10, no. Suppl 1, S33, Jan. 2009. doi:
10.1186/1471-2105-10-S1-S33 (cit. on p. 60).

[214] M. Amit et al., “Differential GC content between exons and introns establishes distinct
strategies of splice-site recognition,” Cell Rep, vol. 1, no. 5, pp. 543–556, May 2012. doi:
10.1016/j.celrep.2012.03.013 (cit. on p. 60).

140

https://doi.org/10.1038/s41436-020-0780-y
https://doi.org/10.1186/s13059-023-03144-z
https://doi.org/10.1186/s40246-023-00451-1
https://doi.org/10.1186/s40246-023-00451-1
https://doi.org/10.48550/arXiv.1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.1038/s41592-021-01252-x
https://doi.org/10.1093/nar/gkaa1087
https://doi.org/10.1038/nrm2777
https://doi.org/10.3389/fbioe.2020.00940
https://doi.org/10.3389/fbioe.2020.00940
https://doi.org/10.1186/1471-2105-10-S1-S33
https://doi.org/10.1016/j.celrep.2012.03.013


[215] C. E. Grant, T. L. Bailey, and W. S. Noble, “FIMO: Scanning for occurrences of a
given motif,” Bioinformatics, vol. 27, no. 7, pp. 1017–1018, Apr. 2011. doi: 10.1093/
bioinformatics/btr064 (cit. on pp. 65, 68, 97).

[216] G. Giudice, F. Sánchez-Cabo, C. Torroja, and E. Lara-Pezzi, “ATtRACT—a database of
RNA-binding proteins and associated motifs,” Database, vol. 2016, baw035, Jan. 2016.
doi: 10.1093/database/baw035 (cit. on pp. 65, 66).

[217] L. P. Benoit Bouvrette, S. Bovaird, M. Blanchette, and E. Lécuyer, “oRNAment: A
database of putative RNA binding protein target sites in the transcriptomes of model
species,” Nucleic Acids Research, vol. 48, no. D1, pp. D166–D173, Jan. 2020. doi: 10.
1093/nar/gkz986 (cit. on pp. 65, 97).

[218] L. E. Marasco and A. R. Kornblihtt, “The physiology of alternative splicing,” Nat Rev
Mol Cell Biol, Oct. 2022. doi: 10.1038/s41580-022-00545-z (cit. on pp. 66, 67).

[219] W. S. Noble, “How does multiple testing correction work?” Nat Biotechnol, vol. 27, no. 12,
pp. 1135–1137, Dec. 2009. doi: 10.1038/nbt1209-1135 (cit. on p. 68).

[220] T. Achsel and C. Bagni, “Cooperativity in RNA–protein interactions: The complex
is more than the sum of its partners,” Current Opinion in Neurobiology, Cellular
Neuroscience, vol. 39, pp. 146–151, Aug. 2016. doi: 10.1016/j.conb.2016.06.007
(cit. on p. 68).

[221] X. Li, G. Quon, H. D. Lipshitz, and Q. Morris, “Predicting in vivo binding sites
of RNA-binding proteins using mRNA secondary structure,” RNA, vol. 16, no. 6,
pp. 1096–1107, Jun. 2010. doi: 10.1261/rna.2017210 (cit. on p. 68).

[222] D. Dominguez et al., “Sequence, Structure, and Context Preferences of Human RNA
Binding Proteins,” Molecular Cell, vol. 70, no. 5, 854–867.e9, Jun. 2018. doi: 10.1016/
j.molcel.2018.05.001 (cit. on pp. 68, 79).

[223] T. Saldi, K. Riemondy, B. Erickson, and D. L. Bentley, “Alternative RNA structures
formed during transcription depend on elongation rate and modify RNA processing,”
Molecular Cell, vol. 81, no. 8, 1789–1801.e5, Apr. 2021. doi: 10.1016/j.molcel.2021.
01.040 (cit. on p. 68).

[224] J. Imig, A. Kanitz, and A. P. Gerber, “RNA regulons and the RNA-protein interaction
network,” Biomol Concepts, vol. 3, no. 5, pp. 403–414, Oct. 2012. doi: 10.1515/bmc-
2012-0016 (cit. on p. 68).

[225] J. J. D. Ho et al., “A network of RNA-binding proteins controls translation efficiency
to activate anaerobic metabolism,” Nat Commun, vol. 11, p. 2677, May 2020. doi: 10.
1038/s41467-020-16504-1 (cit. on p. 68).

141

https://doi.org/10.1093/bioinformatics/btr064
https://doi.org/10.1093/bioinformatics/btr064
https://doi.org/10.1093/database/baw035
https://doi.org/10.1093/nar/gkz986
https://doi.org/10.1093/nar/gkz986
https://doi.org/10.1038/s41580-022-00545-z
https://doi.org/10.1038/nbt1209-1135
https://doi.org/10.1016/j.conb.2016.06.007
https://doi.org/10.1261/rna.2017210
https://doi.org/10.1016/j.molcel.2018.05.001
https://doi.org/10.1016/j.molcel.2018.05.001
https://doi.org/10.1016/j.molcel.2021.01.040
https://doi.org/10.1016/j.molcel.2021.01.040
https://doi.org/10.1515/bmc-2012-0016
https://doi.org/10.1515/bmc-2012-0016
https://doi.org/10.1038/s41467-020-16504-1
https://doi.org/10.1038/s41467-020-16504-1


[226] J. Han et al., “SR Proteins Induce Alternative Exon Skipping through Their Activities
on the Flanking Constitutive Exons,” Mol Cell Biol, vol. 31, no. 4, pp. 793–802, Feb.
2011. doi: 10.1128/MCB.01117-10 (cit. on p. 70).

[227] S. C. Huelga et al., “Integrative genome-wide analysis reveals cooperative regulation of
alternative splicing by hnRNP proteins,” Cell Rep, vol. 1, no. 2, pp. 167–178, Feb. 2012.
doi: 10.1016/j.celrep.2012.02.001 (cit. on p. 71).

[228] S. Pandit et al., “Genome-wide Analysis Reveals SR Protein Cooperation and
Competition in Regulated Splicing,” Molecular Cell, vol. 50, no. 2, pp. 223–235, Apr.
2013. doi: 10.1016/j.molcel.2013.03.001 (cit. on pp. 72, 74).

[229] J. M. Howard and J. R. Sanford, “THE RNAissance Family: SR proteins as multifaceted
regulators of gene expression,” Wiley Interdiscip Rev RNA, vol. 6, no. 1, pp. 93–110, Jan.
2015. doi: 10.1002/wrna.1260 (cit. on p. 72).

[230] J. Ule et al., “An RNA map predicting Nova-dependent splicing regulation,” Nature,
vol. 444, no. 7119, pp. 580–586, Nov. 2006. doi: 10.1038/nature05304 (cit. on p. 72).

[231] S. Ishigaki et al., “Position-dependent FUS-RNA interactions regulate alternative splicing
events and transcriptions,” Sci Rep, vol. 2, no. 1, p. 529, Jul. 2012. doi: 10 . 1038 /
srep00529 (cit. on p. 75).

[232] M. Mikl, A. Hamburg, Y. Pilpel, and E. Segal, “Dissecting splicing decisions and
cell-to-cell variability with designed sequence libraries,” Nat Commun, vol. 10, p. 4572,
Oct. 2019. doi: 10.1038/s41467-019-12642-3 (cit. on p. 75).

[233] M. Ghandi, D. Lee, M. Mohammad-Noori, and M. A. Beer, “Enhanced Regulatory
Sequence Prediction Using Gapped k-mer Features,” PLoS Comput Biol, vol. 10, no. 7,
e1003711, Jul. 2014. doi: 10.1371/journal.pcbi.1003711 (cit. on p. 76).

[234] D. Lee, “LS-GKM: A new gkm-SVM for large-scale datasets,” Bioinformatics, vol. 32,
no. 14, pp. 2196–2198, Jul. 2016. doi: 10.1093/bioinformatics/btw142 (cit. on p. 76).

[235] A. Shrikumar, Lsgkm+gkmexplain with regression functionality, Zenodo, Dec. 2020. doi:
10.5281/zenodo.4300866 (cit. on p. 76).

[236] D. Ray et al., “RNA-binding proteins that lack canonical RNA-binding domains are rarely
sequence-specific,” Sci Rep, vol. 13, no. 1, p. 5238, Mar. 2023. doi: 10.1038/s41598-
023-32245-9 (cit. on p. 78).

[237] M. W. Hentze, A. Castello, T. Schwarzl, and T. Preiss, “A brave new world of
RNA-binding proteins,” Nat Rev Mol Cell Biol, vol. 19, no. 5, pp. 327–341, May 2018.
doi: 10.1038/nrm.2017.130 (cit. on p. 78).

142

https://doi.org/10.1128/MCB.01117-10
https://doi.org/10.1016/j.celrep.2012.02.001
https://doi.org/10.1016/j.molcel.2013.03.001
https://doi.org/10.1002/wrna.1260
https://doi.org/10.1038/nature05304
https://doi.org/10.1038/srep00529
https://doi.org/10.1038/srep00529
https://doi.org/10.1038/s41467-019-12642-3
https://doi.org/10.1371/journal.pcbi.1003711
https://doi.org/10.1093/bioinformatics/btw142
https://doi.org/10.5281/zenodo.4300866
https://doi.org/10.1038/s41598-023-32245-9
https://doi.org/10.1038/s41598-023-32245-9
https://doi.org/10.1038/nrm.2017.130


[238] P. Julien, B. Miñana, P. Baeza-Centurion, J. Valcárcel, and B. Lehner, “The complete
local genotype-phenotype landscape for the alternative splicing of a human exon,” Nat
Commun, vol. 7, p. 11 558, May 2016. doi: 10.1038/ncomms11558 (cit. on pp. 80, 89,
116).

[239] A. Penev, A. Bazley, M. Shen, J. D. Boeke, S. A. Savage, and A. Sfeir, “Alternative
splicing is a developmental switch for hTERT expression,” Molecular Cell, vol. 81, no. 11,
2349–2360.e6, Jun. 2021. doi: 10.1016/j.molcel.2021.03.033 (cit. on p. 80).

[240] E. I. Prakash, A. Shrikumar, and A. Kundaje, “Towards More Realistic Simulated
Datasets for Benchmarking Deep Learning Models in Regulatory Genomics,” in
Proceedings of the 16th Machine Learning in Computational Biology Meeting, PMLR,
Jan. 2022, pp. 58–77 (cit. on pp. 82, 83).

[241] J. Zrimec et al., “Controlling gene expression with deep generative design of regulatory
DNA,” Nat Commun, vol. 13, no. 1, p. 5099, Aug. 2022. doi: 10.1038/s41467-022-
32818-8 (cit. on p. 83).

[242] S. M. Castillo-Hair and G. Seelig, “Machine Learning for Designing Next-Generation
mRNA Therapeutics,” Acc. Chem. Res., vol. 55, no. 1, pp. 24–34, Jan. 2022. doi: 10.
1021/acs.accounts.1c00621 (cit. on p. 83).

[243] N. Killoran, L. J. Lee, A. Delong, D. Duvenaud, and B. J. Frey, Generating and designing
DNA with deep generative models, Dec. 2017. doi: 10.48550/arXiv.1712.06148 (cit. on
p. 83).

[244] J. Linder, N. Bogard, A. B. Rosenberg, and G. Seelig, “A Generative Neural Network
for Maximizing Fitness and Diversity of Synthetic DNA and Protein Sequences,” Cell
Systems, vol. 11, no. 1, 49–62.e16, Jul. 2020. doi: 10.1016/j.cels.2020.05.007 (cit. on
p. 83).

[245] D. Brookes, H. Park, and J. Listgarten, “Conditioning by adaptive sampling for robust
design,” in Proceedings of the 36th International Conference on Machine Learning, PMLR,
May 2019, pp. 773–782 (cit. on p. 83).

[246] J. Linder and G. Seelig, “Fast activation maximization for molecular sequence design,”
BMC Bioinformatics, vol. 22, no. 1, p. 510, Oct. 2021. doi: 10.1186/s12859-021-
04437-5 (cit. on p. 83).

[247] J. A. Valeri et al., “BioAutoMATED: An end-to-end automated machine learning tool for
explanation and design of biological sequences,” Cell Systems, vol. 14, no. 6, 525–542.e9,
Jun. 2023. doi: 10.1016/j.cels.2023.05.007 (cit. on p. 83).

[248] I. J. Goodfellow et al., Generative Adversarial Networks, Jun. 2014. doi: 10.48550/
arXiv.1406.2661. arXiv: 1406.2661 (cit. on p. 83).

143

https://doi.org/10.1038/ncomms11558
https://doi.org/10.1016/j.molcel.2021.03.033
https://doi.org/10.1038/s41467-022-32818-8
https://doi.org/10.1038/s41467-022-32818-8
https://doi.org/10.1021/acs.accounts.1c00621
https://doi.org/10.1021/acs.accounts.1c00621
https://doi.org/10.48550/arXiv.1712.06148
https://doi.org/10.1016/j.cels.2020.05.007
https://doi.org/10.1186/s12859-021-04437-5
https://doi.org/10.1186/s12859-021-04437-5
https://doi.org/10.1016/j.cels.2023.05.007
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.48550/arXiv.1406.2661
https://arxiv.org/abs/1406.2661


[249] D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes, Dec. 2022. doi: 10.
48550/arXiv.1312.6114 (cit. on p. 83).

[250] S. Sinai, R. Wang, A. Whatley, S. Slocum, E. Locane, and E. D. Kelsic, AdaLead: A
simple and robust adaptive greedy search algorithm for sequence design, Oct. 2020. doi:
10.48550/arXiv.2010.02141 (cit. on p. 83).

[251] C. Angermueller et al., “Population-Based Black-Box Optimization for Biological
Sequence Design,” in Proceedings of the 37th International Conference on Machine
Learning, PMLR, Nov. 2020, pp. 324–334 (cit. on p. 83).

[252] A. Klie et al., “Predictive analyses of regulatory sequences with EUGENe,” Nat Comput
Sci, vol. 3, no. 11, pp. 946–956, Nov. 2023. doi: 10.1038/s43588-023-00544-w (cit. on
p. 83).

[253] I. I. Taskiran et al., “Cell type directed design of synthetic enhancers,” Nature, Dec. 2023.
doi: 10.1038/s41586-023-06936-2 (cit. on pp. 83, 90).

[254] N. K. Lee, Z. Tang, S. Toneyan, and P. K. Koo, “EvoAug: Improving generalization
and interpretability of genomic deep neural networks with evolution-inspired data
augmentations,” Genome Biology, vol. 24, no. 1, p. 105, May 2023. doi: 10.1186/s13059-
023-02941-w (cit. on p. 83).

[255] R. García-Pérez et al., “The landscape of expression and alternative splicing variation
across human traits,” Cell Genom, vol. 3, no. 1, p. 100 244, Jan. 2023. doi: 10.1016/j.
xgen.2022.100244 (cit. on p. 89).

[256] I. Cascino, G. Fiucci, G. Papoff, and G. Ruberti, “Three functional soluble forms of the
human apoptosis-inducing Fas molecule are produced by alternative splicing,” J Immunol,
vol. 154, no. 6, pp. 2706–2713, Mar. 1995 (cit. on p. 89).

[257] J. M. Izquierdo et al., “Regulation of Fas Alternative Splicing by Antagonistic Effects of
TIA-1 and PTB on Exon Definition,” Molecular Cell, vol. 19, no. 4, pp. 475–484, Aug.
2005. doi: 10.1016/j.molcel.2005.06.015 (cit. on p. 89).

[258] P. Baeza-Centurion, B. Miñana, J. M. Schmiedel, J. Valcárcel, and B. Lehner,
“Combinatorial Genetics Reveals a Scaling Law for the Effects of Mutations on Splicing,”
Cell, vol. 176, no. 3, 549–563.e23, Jan. 2019. doi: 10.1016/j.cell.2018.12.010 (cit. on
pp. 89, 116).

[259] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, Optuna: A Next-generation
Hyperparameter Optimization Framework, Jul. 2019. doi: 10.48550/arXiv.1907.10902.
arXiv: 1907.10902 (cit. on p. 90).

144

https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.2010.02141
https://doi.org/10.1038/s43588-023-00544-w
https://doi.org/10.1038/s41586-023-06936-2
https://doi.org/10.1186/s13059-023-02941-w
https://doi.org/10.1186/s13059-023-02941-w
https://doi.org/10.1016/j.xgen.2022.100244
https://doi.org/10.1016/j.xgen.2022.100244
https://doi.org/10.1016/j.molcel.2005.06.015
https://doi.org/10.1016/j.cell.2018.12.010
https://doi.org/10.48550/arXiv.1907.10902
https://arxiv.org/abs/1907.10902


[260] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter
optimization,” in Advances in Neural Information Processing Systems, J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, Eds., vol. 24, Curran Associates,
Inc., 2011 (cit. on p. 90).

[261] L. Spector, “Assessment of problem modality by differential performance of lexicase
selection in genetic programming: A preliminary report,” in Proceedings of the 14th
Annual Conference Companion on Genetic and Evolutionary Computation, ser. GECCO
’12, New York, NY, USA: Association for Computing Machinery, Jul. 2012, pp. 401–408.
doi: 10.1145/2330784.2330846 (cit. on p. 93).

[262] L. T. Gehman et al., “The splicing regulator Rbfox2 is required for both cerebellar
development and mature motor function,” Genes Dev, vol. 26, no. 5, pp. 445–460, Mar.
2012. doi: 10.1101/gad.182477.111 (cit. on p. 95).

[263] J. P. Venables et al., “RBFOX2 Is an Important Regulator of Mesenchymal
Tissue-Specific Splicing in both Normal and Cancer Tissues,” Mol Cell Biol, vol. 33,
no. 2, pp. 396–405, Jan. 2013. doi: 10.1128/MCB.01174-12 (cit. on p. 95).

[264] A. Jbara et al., “RBFOX2 modulates a metastatic signature of alternative splicing in
pancreatic cancer,” Nature, pp. 1–7, Mar. 2023. doi: 10.1038/s41586-023-05820-3
(cit. on p. 95).

[265] P. Baeza-Centurion, B. Miñana, J. Valcárcel, and B. Lehner, “Mutations primarily alter
the inclusion of alternatively spliced exons,” eLife, vol. 9, C. P. Ponting, P. J. Wittkopp,
and N. L. Barbosa-Morais, Eds., e59959, Oct. 2020. doi: 10.7554/eLife.59959 (cit. on
p. 96).

[266] I. Agarkova, D. Auerbach, E. Ehler, and J. C. Perriard, “A novel marker for
vertebrate embryonic heart, the EH-myomesin isoform,” J Biol Chem, vol. 275, no. 14,
pp. 10 256–10 264, Apr. 2000. doi: 10.1074/jbc.275.14.10256 (cit. on p. 105).

[267] R. Schoenauer et al., “Myomesin is a molecular spring with adaptable elasticity,” J Mol
Biol, vol. 349, no. 2, pp. 367–379, Jun. 2005. doi: 10.1016/j.jmb.2005.03.055 (cit. on
p. 105).

[268] Ž. Avsec, M. Barekatain, J. Cheng, and J. Gagneur, “Modeling positional effects of
regulatory sequences with spline transformations increases prediction accuracy of deep
neural networks,” Bioinformatics, vol. 34, no. 8, pp. 1261–1269, Apr. 2018. doi: 10.1093/
bioinformatics/btx727 (cit. on p. 115).

[269] M. Ghanbari and U. Ohler, “Deep neural networks for interpreting RNA-binding protein
target preferences,” Genome Res., vol. 30, no. 2, pp. 214–226, Feb. 2020. doi: 10.1101/
gr.247494.118 (cit. on p. 115).

145

https://doi.org/10.1145/2330784.2330846
https://doi.org/10.1101/gad.182477.111
https://doi.org/10.1128/MCB.01174-12
https://doi.org/10.1038/s41586-023-05820-3
https://doi.org/10.7554/eLife.59959
https://doi.org/10.1074/jbc.275.14.10256
https://doi.org/10.1016/j.jmb.2005.03.055
https://doi.org/10.1093/bioinformatics/btx727
https://doi.org/10.1093/bioinformatics/btx727
https://doi.org/10.1101/gr.247494.118
https://doi.org/10.1101/gr.247494.118


[270] M. Horlacher et al., “Towards in silico CLIP-seq: Predicting protein-RNA interaction
via sequence-to-signal learning,” Genome Biology, vol. 24, no. 1, p. 180, Aug. 2023. doi:
10.1186/s13059-023-03015-7 (cit. on p. 116).

[271] B. J. Livesey and J. A. Marsh, “Using deep mutational scanning to benchmark variant
effect predictors and identify disease mutations,” Molecular Systems Biology, vol. 16,
no. 7, e9380, Jul. 2020. doi: 10.15252/msb.20199380 (cit. on p. 116).

[272] S. Braun et al., “Decoding a cancer-relevant splicing decision in the RON proto-oncogene
using high-throughput mutagenesis,” Nat Commun, vol. 9, no. 1, p. 3315, Aug. 2018. doi:
10.1038/s41467-018-05748-7 (cit. on p. 116).

[273] P. Gergics et al., “High-throughput splicing assays identify missense and silent
splice-disruptive POU1F1 variants underlying pituitary hormone deficiency,” Am J Hum
Genet, vol. 108, no. 8, pp. 1526–1539, Aug. 2021. doi: 10.1016/j.ajhg.2021.06.013
(cit. on p. 116).

[274] C. Smith, B. B. Burugula, I. Dunn, S. Aradhya, J. O. Kitzman, and J. L. Yee,
“High-Throughput Splicing Assays Identify Known and Novel WT1 Exon 9 Variants
in Nephrotic Syndrome,” Kidney Int Rep, vol. 8, no. 10, pp. 2117–2125, Oct. 2023. doi:
10.1016/j.ekir.2023.07.033 (cit. on p. 116).

[275] K. Gupta et al., “Improved modeling of RNA-binding protein motifs in an interpretable
neural model of RNA splicing,” Genome Biology, vol. 25, no. 1, p. 23, Jan. 2024. doi:
10.1186/s13059-023-03162-x (cit. on p. 117).

[276] J. T. Witten and J. Ule, “Understanding splicing regulation through RNA splicing maps,”
Trends Genet, vol. 27, no. 3-2, pp. 89–97, Mar. 2011. doi: 10.1016/j.tig.2010.12.001
(cit. on p. 118).

[277] D. Vitsios, R. S. Dhindsa, L. Middleton, A. B. Gussow, and S. Petrovski, “Prioritizing
non-coding regions based on human genomic constraint and sequence context with deep
learning,” Nat Commun, vol. 12, no. 1, p. 1504, Mar. 2021. doi: 10.1038/s41467-021-
21790-4 (cit. on p. 118).

[278] M. Yuksekgonul, M. Wang, and J. Zou, Post-hoc Concept Bottleneck Models, Feb. 2023.
doi: 10.48550/arXiv.2205.15480. arXiv: 2205.15480 [cs, stat] (cit. on p. 118).

[279] OpenAI et al., GPT-4 Technical Report, Mar. 2024. doi: 10.48550/arXiv.2303.08774.
arXiv: 2303.08774 [cs] (cit. on p. 118).

[280] A. Rives et al., “Biological structure and function emerge from scaling unsupervised
learning to 250 million protein sequences,” Proceedings of the National Academy of
Sciences, vol. 118, no. 15, e2016239118, Apr. 2021. doi: 10.1073/pnas.2016239118
(cit. on p. 118).

146

https://doi.org/10.1186/s13059-023-03015-7
https://doi.org/10.15252/msb.20199380
https://doi.org/10.1038/s41467-018-05748-7
https://doi.org/10.1016/j.ajhg.2021.06.013
https://doi.org/10.1016/j.ekir.2023.07.033
https://doi.org/10.1186/s13059-023-03162-x
https://doi.org/10.1016/j.tig.2010.12.001
https://doi.org/10.1038/s41467-021-21790-4
https://doi.org/10.1038/s41467-021-21790-4
https://doi.org/10.48550/arXiv.2205.15480
https://arxiv.org/abs/2205.15480
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1073/pnas.2016239118


[281] J. A. Ruffolo and A. Madani, “Designing proteins with language models,” Nat Biotechnol,
vol. 42, no. 2, pp. 200–202, Feb. 2024. doi: 10.1038/s41587-024-02123-4 (cit. on p. 118).

[282] H. Dalla-Torre et al., The Nucleotide Transformer: Building and Evaluating Robust
Foundation Models for Human Genomics, Sep. 2023. doi: 10.1101/2023.01.11.523679
(cit. on p. 118).

[283] E. Nguyen et al., HyenaDNA: Long-Range Genomic Sequence Modeling at Single
Nucleotide Resolution, Nov. 2023. doi: 10.48550/arXiv.2306.15794. arXiv: 2306.15794
[cs, q-bio] (cit. on p. 118).

[284] V. Fishman et al., GENA-LM: A Family of Open-Source Foundational DNA Language
Models for Long Sequences, Nov. 2023. doi: 10.1101/2023.06.12.544594 (cit. on
p. 118).

[285] Z. Zhou, Y. Ji, W. Li, P. Dutta, R. Davuluri, and H. Liu, DNABERT-2: Efficient
Foundation Model and Benchmark For Multi-Species Genome, Mar. 2024. doi: 10.48550/
arXiv.2306.15006. arXiv: 2306.15006 [cs, q-bio] (cit. on p. 118).

[286] Y. Ji, Z. Zhou, H. Liu, and R. V. Davuluri, “DNABERT: Pre-trained Bidirectional
Encoder Representations from Transformers model for DNA-language in genome,”
Bioinformatics, vol. 37, no. 15, pp. 2112–2120, Aug. 2021. doi: 10 . 1093 /
bioinformatics/btab083 (cit. on p. 118).

[287] G. Benegas, S. S. Batra, and Y. S. Song, “DNA language models are powerful predictors of
genome-wide variant effects,” Proceedings of the National Academy of Sciences, vol. 120,
no. 44, e2311219120, Oct. 2023. doi: 10.1073/pnas.2311219120 (cit. on p. 118).

[288] E. Nguyen et al., Sequence modeling and design from molecular to genome scale with Evo,
Mar. 2024. doi: 10.1101/2024.02.27.582234 (cit. on p. 118).

[289] M. Poli et al., Hyena Hierarchy: Towards Larger Convolutional Language Models, Apr.
2023. doi: 10.48550/arXiv.2302.10866. arXiv: 2302.10866 [cs] (cit. on p. 118).

[290] Z. Tang and P. K. Koo, Evaluating the representational power of pre-trained DNA
language models for regulatory genomics, Mar. 2024. doi: 10.1101/2024.02.29.582810
(cit. on p. 119).

[291] K. Chen, Y. Zhou, M. Ding, Y. Wang, Z. Ren, and Y. Yang, “Self-supervised learning on
millions of primary RNA sequences from 72 vertebrates improves sequence-based RNA
splicing prediction,” Briefings in Bioinformatics, vol. 25, no. 3, bbae163, May 2024. doi:
10.1093/bib/bbae163 (cit. on p. 119).

[292] A. Celaj et al., An RNA foundation model enables discovery of disease mechanisms and
candidate therapeutics, Sep. 2023. doi: 10.1101/2023.09.20.558508 (cit. on p. 119).

147

https://doi.org/10.1038/s41587-024-02123-4
https://doi.org/10.1101/2023.01.11.523679
https://doi.org/10.48550/arXiv.2306.15794
https://arxiv.org/abs/2306.15794
https://arxiv.org/abs/2306.15794
https://doi.org/10.1101/2023.06.12.544594
https://doi.org/10.48550/arXiv.2306.15006
https://doi.org/10.48550/arXiv.2306.15006
https://arxiv.org/abs/2306.15006
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1093/bioinformatics/btab083
https://doi.org/10.1073/pnas.2311219120
https://doi.org/10.1101/2024.02.27.582234
https://doi.org/10.48550/arXiv.2302.10866
https://arxiv.org/abs/2302.10866
https://doi.org/10.1101/2024.02.29.582810
https://doi.org/10.1093/bib/bbae163
https://doi.org/10.1101/2023.09.20.558508


[293] J. Linder, D. Srivastava, H. Yuan, V. Agarwal, and D. R. Kelley, Predicting RNA-seq
coverage from DNA sequence as a unifying model of gene regulation, Sep. 2023. doi:
10.1101/2023.08.30.555582 (cit. on p. 119).

[294] B. P. de Almeida et al., SegmentNT: Annotating the genome at single-nucleotide resolution
with DNA foundation models, Mar. 2024. doi: 10.1101/2024.03.14.584712 (cit. on
p. 119).

[295] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional Networks for Biomedical
Image Segmentation, May 2015. doi: 10.48550/arXiv.1505.04597. arXiv: 1505.04597
[cs] (cit. on p. 119).

[296] S. Vilov and M. Heinig, Investigating the performance of foundation models on human
3’UTR sequences, Feb. 2024. doi: 10.1101/2024.02.09.579631 (cit. on p. 120).

[297] K. Dudnyk, D. Cai, C. Shi, J. Xu, and J. Zhou, “Sequence basis of transcription initiation
in the human genome,” Science, vol. 384, no. 6694, eadj0116, Apr. 2024. doi: 10.1126/
science.adj0116 (cit. on p. 120).

[298] S. Naqvi et al., Transfer learning reveals sequence determinants of the quantitative
response to transcription factor dosage, May 2024. doi: 10.1101/2024.05.28.596078
(cit. on p. 120).

[299] C. Wilks, P. Gaddipati, A. Nellore, and B. Langmead, “Snaptron: Querying splicing
patterns across tens of thousands of RNA-seq samples,” Bioinformatics, vol. 34, no. 1,
pp. 114–116, Jan. 2018. doi: 10.1093/bioinformatics/btx547 (cit. on p. 153).

[300] X. Liu, C. Li, C. Mou, Y. Dong, and Y. Tu, “dbNSFP v4: A comprehensive database
of transcript-specific functional predictions and annotations for human nonsynonymous
and splice-site SNVs,” Genome Medicine, vol. 12, no. 1, p. 103, Dec. 2020. doi: 10.1186/
s13073-020-00803-9 (cit. on p. 154).

[301] W. J. Kent et al., “The Human Genome Browser at UCSC,” Genome Res., vol. 12, no. 6,
pp. 996–1006, Jun. 2002. doi: 10.1101/gr.229102 (cit. on p. 154).

[302] B. S. Pedersen, R. M. Layer, and A. R. Quinlan, “Vcfanno: Fast, flexible annotation
of genetic variants,” Genome Biology, vol. 17, no. 1, p. 118, Jun. 2016. doi: 10.1186/
s13059-016-0973-5 (cit. on p. 154).

[303] A. C. Gomes, P. S. Barbosa, A. Coutinho, I. Cruz, M. Carmo-Fonseca, and L. R. Lopes,
“Whole-genome DNA sequencing: The key to detecting a sarcomeric mutation in a ‘false
genotype-negative’ family with hypertrophic cardiomyopathy,” Revista Portuguesa de
Cardiologia, vol. 39, no. 4, 227.e1–227.e9, Apr. 2020. doi: 10.1016/j.repc.2019.03.011
(cit. on p. 177).

148

https://doi.org/10.1101/2023.08.30.555582
https://doi.org/10.1101/2024.03.14.584712
https://doi.org/10.48550/arXiv.1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://doi.org/10.1101/2024.02.09.579631
https://doi.org/10.1126/science.adj0116
https://doi.org/10.1126/science.adj0116
https://doi.org/10.1101/2024.05.28.596078
https://doi.org/10.1093/bioinformatics/btx547
https://doi.org/10.1186/s13073-020-00803-9
https://doi.org/10.1186/s13073-020-00803-9
https://doi.org/10.1101/gr.229102
https://doi.org/10.1186/s13059-016-0973-5
https://doi.org/10.1186/s13059-016-0973-5
https://doi.org/10.1016/j.repc.2019.03.011


[304] S. Matos et al., “Screening a Targeted Panel of Genes by Next-Generation Sequencing
Improves Risk Stratification in Real World Patients with Acute Myeloid Leukemia,”
Cancers, vol. 14, no. 13, p. 3236, Jun. 2022. doi: 10.3390/cancers14133236 (cit. on
p. 177).

[305] A. Usié et al., “An improved reference genome and first organelle genomes of Quercus
suber,” Tree Genetics & Genomes, vol. 19, no. 6, p. 54, Nov. 2023. doi: 10.1007/s11295-
023-01624-8 (cit. on p. 178).

[306] A. C. Raposo et al., Erosion of X-Chromosome Inactivation in female hiPSCs is
heterogeneous and persists during differentiation, Mar. 2024. doi: 10.1101/2024.03.15.
585169 (cit. on p. 178).

149

https://doi.org/10.3390/cancers14133236
https://doi.org/10.1007/s11295-023-01624-8
https://doi.org/10.1007/s11295-023-01624-8
https://doi.org/10.1101/2024.03.15.585169
https://doi.org/10.1101/2024.03.15.585169




Appendix A

Predicting intronic variants affecting the
splicing mechanism

A.1 Data collection

We employed the same variant annotation procedure for all the variants collected for
this study (datasets described below). We used Ensembl VEP v109 [188] for the
task and transcript annotations were added accordingly (with --per_gene --pick_order
ccds,canonical,biotype, rank --no_intergenic --gencode_basic set).

ClinVar

We downloaded ClinVar v202204 and selected all the SNV for downstream analysis. We kept
variants with Pathogenic and Benign assignments (CLNSIG == Pathogenic or Likely_pathogenic
or Benign or Likely_benign). We identified intronic variants based on Ensembl VEP
annotations: only variants with at least one intronic consequence (INTRON == 1) in a
protein-coding transcript (BIOTYPE = protein_coding) were retained. Additionally, we
excluded variants with exonic annotations in any other gene (EXON 6= 1). To avoid being
overly conservative, we added variants that Ensembl VEP annotated as being outside
the gene body for the picked consequence (Consequence == TF_binding_site_variant or
downstream_gene_variant or upstream_gene_variant or regulatory_region_variant), but that
are annotated with intronic ontology terms in the MC field in the original VCF. To minimize
labeling errors, we excluded variants with less than one confidence star. To ensure that
the number of benign variants did not exceed 50,000 (and therefore avoid the dataset being
excessively unbalanced), we selected all higher-confidence benign variants (with two or more
stars, N=13,093) along with 36,907 randomly chosen one-star variants. Finally, we retrieved the
RefSeq transcript ID associated with each variant and selected only those that were intronic in
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such reference transcript. The dataset size for raw evaluations amounted to 18,446 pathogenic
and 49,343 benign variants.

Disease-causing intronic variants affecting RNA splicing

This dataset refers to a high-quality variant set that we carefully curated to comply with the
following criteria:

• Variant must locate at more than 10bp from the nearest splice site.
• Variant was experimentally proven to affect normal RNA splicing.
• Variant does not necessarily lead to pseudoexon activation.

The previous curation effort from our lab [59] was updated for this manuscript to
include a comprehensive set of intronic variants identified after 2017. Therefore, the positive
(disease-causing) set of variants used in this benchmark totals 242 (81 Vaz-Drago et al. [59] and
161 from the new curation effort).

We used gnomAD v2.1 to generate a matched control set. First, we extracted all gnomAD
variants occurring in a window of 500bp surrounding the variants in the positive set and selected
common records with a frequency higher 0.01 (1%) in the population, resulting in 1128 variants.
Then, we ran Ensembl VEP as previously described and retained the intronic variants annotated
as occurring in one of the 148 unique genes of the positive set (N=1091). Moreover, we kept
variants absent in ClinVar having the VCF filter field as PASS (N=546). Finally, we randomly
sampled 242 from this set.

Variants that affect RNA splicing

The third main dataset refers to variants that affect different mechanisms of splicing regulation,
which may or may not lead to disease. We defined different molecular categories based on the
location of the variant relative to the abnormal splicing event. We focused on deep intronic
variants that lead to partial intron retention or pseudoexon activation. In cases where a variant
leads to both pseudoexon activation and partial intron retention, we have assigned it to the
pseudoexon activation group. Exceptionally, we included variants that affect the branchpoint
motif (thus, closer to annotated splice acceptors) that include other types of splicing alterations
such as exon skipping. We defined each category as follows:

• Branchpoint associated, for those variants occurring between -18 and 44bp upstream (as
used in [151]) of an annotated or cryptic splicing acceptor site, and that create or disrupt
any of the following adenine-branchpoint consensus motifs: YTNAY, YTNA, TNA, YNA
[131].

• Acceptor Upstream, referring to any variant that locates between -2 and -18bp upstream
of the cryptic splice acceptor (including the polypyrimidine tract).
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• New Splice Acceptor, denoting the variants that occur at the cryptic splice acceptor
positions, including the first nucleotide of the cryptic exon.

• Exonic-like, for any variant occurring within the cryptic exon (pseudoexon or partially
retained intron).

• New Splice Donor, composed of variants located at the cryptic splice donor positions,
including the last position of the cryptic exon.

• Donor Downstream, referring to any deep intronic variant that locates at a distance of
more than 2bp from the activated cryptic splice donor.

We used data produced or gathered from multiple studies to assign variants to each
category (Table 4.2). While splicing-altering variants were straightforward to assign (based
on source data, the functional consequence, and distances to the splicing element considered),
we distributed the non-altering variants such that they resembled as best as possible the spatial
distribution of the positive sets. Hence, we assigned the negative variants taking into account
two levels of information: the primary group (partial intron retention, pseudoexon activation)
and the region category.

To keep in line with the expected biology, we assigned the variants that were within a defined
distance to a splice site to the partial intron retention group and deeper intronic variants to
the pseudoexon group. We used different distance thresholds for splice acceptors and donors
(100bp and 20bp, respectively) so that the datasets were reasonably balanced. As for the region
category, we defined negative variants occurring between 18 and 44bp upstream of an annotated
splicing acceptor as branchpoint-associated variants. We assigned as acceptor-upstream or
donor-downstream the remaining intronic variants according to whether they were located
upstream or downstream of the nearest annotated splice site. Because pseudoexons tend to
resemble authentic exons [193], we exceptionally assigned exonic variants that did not change
inclusion levels of tested exons [194] as controls for the Exonic-like category.

Lastly, we generated control datasets for the new splice site categories. Splice site variants
(located at one of the dinucleotide positions) that were experimentally tested to not affect
splicing are not easily accessible. Therefore, to mimic the positive set, we looked for common
deep intronic SNV (> 5% in gnomAD v2.1) in protein-coding transcripts that generate the
most common 5-mer acceptor motif CAGGT in the human genome [58] through a mutation
in the core splice site dinucleotide. We randomly selected 64 variants to match the number of
positive new splice acceptor variants exactly. We employed the same procedure for the new
splice donor variants, where we kept the variants that generate the most common 6-mer donor
motif GGTAAG in the human genome [58] at the GT position. Finally, we selected 197 variants
at random to match the number of positive new splice donor variants. We confirmed using
Snaptron [299] that in GTEx data, there is no evidence that a splice junction is used at the
variant intervals.
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A.2 Prediction tools

We selected an extensive list of prediction tools for evaluation. The single criterion for the
inclusion of a tool was that it had to be designed to predict (at least partially) intronic variation.
When available, we used pre-computed scores to annotate our variant sets (from dbNSFP v4.0b1
[300], UCSC genome browser [301], Zenodo or tool website). Otherwise, we ran the models
directly following the developer’s instructions. For a subset of splicing-related tools (MMSplice,
HAL, kipoiSplice4), we employed kipoi v0.8.6 [82] to get predictions. We additionally included
splicing-related tools that predict specific splicing signals (e.g., BP) and are not necessarily
targeted to predict pathogenicity. Because most of these tools do not score variants by design,
and some require using a web-based portal, we developed a simple utility to prepare their input
given a VCF file. Moreover, we created a script for each tool to process the raw output into
a final prediction score to be included in a VCF file. The package is available at https://
github.com/PedroBarbosa/Prepare_SplicingPredictors. We annotated the final VCF files
with all the predictions using vcfanno v0.3.3 [302]. We describe all the tools, their reference
thresholds and how we ran them in Table 4.1.

A.3 Performance evaluation

We used VETA v0.7.8 [36] to perform all the performance evaluations. In this study, we
employed different metrics according to the nature of the dataset and the goal of the analysis.
For ClinVar data, we ranked variants based on the F1-score, given the unbalanced nature of
the data (much more deep intronic benign variants than pathogenic). Because some tools do
not score deep in the introns (missing data), we weighted the F1-score with the prediction
coverage: Coverage ·

(
2 · (Precision·Recall)

(Precision+Recall)

)
where Coverage = Scored_variants

Total_variants . For balanced
datasets, we ranked tools using a slight variation of the Matthews Correlation Coefficient (MCC)
(MCC = TP ·TN−FP ·FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
) that normalizes the metric range between 0 and

1 (normalizedMCC = MCC+1
2 ). We weighted the normalized MCC values with the prediction

coverage (weighted_normalized_MCC = Coverage · normalizedMCC). Additionally, we
employed ROC and Precision-Recall Curves (PR Curves) for the comparisons that measure
performance at multiple threshold values. To summarize such analyses, we used the auROC
and the auPRC metrics, respectively.

A.4 Further inspection of deep intronic variants in ClinVar

We selected ClinVar variants assigned to the “501-1000” and “+1000” intronic bins and used
ensembl VEP to perform reannotation. We ran ensembl VEP using RefSeq annotations without
picking any consequence (--per_gene and --pick_order were not set), meaning that all
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transcript consequences associated with each variant were retained. We employed a filter to
only keep annotations of protein-coding transcripts. Then, we assigned each variant to one
of four categories, according to the overlap configuration of transcripts belonging to the gene
associated with the variant: if a variant is exonic in another overlapping transcript, we termed
it as “Exonic”; if a variant is located at a shorter distance from the splice site in any other
transcript, we assigned the category “> 1 transcript (smaller offset)”; if the distance to the
closest splice site remains the same for all transcripts overlapping the variant, we assigned the
variant to the “> 1 transcript (smaller offset)” category; lastly, if no other transcript overlapped
with the variant (besides the one used in the analysis), we set it to the “No other transcript”
category.

A.5 Assessing quality of interpretations for SPiP, SQURLS and
SpliceVault

For this task, we employed the dataset of pathogenic splicing variants used throughout
the study. It includes variants from our curation plus variants from Vaz-Drago et al. [59]
because the molecular mechanism for the splicing defect is known for almost all records
(Supplementary Table S3). For SPiP and SQUIRLS, we ran VETA in the interrogate mode
(with --labels Pathogenic set) to list the variants correctly predicted by each tool using
the threshold calibrated for non-canonical intronic variation (SPiP > 0.009 and SQUIRLS
> 0.016). We removed variants for which the ground truth information was not available
(e.g.,pseudoexon-activating variants that lack details of the location of the variant concerning
the cryptic event).

For SPiP, we parsed the output so that the interpretation tag, confidence interval and original
score were retrieved (3rd, 4th and 5th fields after splitting predictions by “|”). We assigned
variants with an “NTR” tag (low probability of affecting splicing, yet correctly predicted as
pathogenic according to the calibrated threshold) to the “No interpretation” category. Variants
not associated with any particular splicing mechanism (according to SPiP, the “Alter by complex
event” tag) were given the “Not informative” interpretation category. Then, for each of the
remaining SPiP tags we classified the interpretation as correct if they matched the ground truth
information:

• “Alter BP” for variants associated with the branchpoint signal, else incorrect.
• “Alter by create new Exon” for variants that trigger pseudoexon activation, else incorrect.
• “Alter by create New splice site” for variants that create a new splice site or activate

a nearby existing cryptic splice site, regardless of the variant leading to pseudoexon
activation or partial intron retention, else incorrect.

• “Alter ESR” for intronic variants occurring within the boundaries of a new pseudoexon,
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else incorrect.
• “Alter by MES (Poly TC)” for polypyrimidine tract variants, else incorrect.

As for SQUIRLS, we ran the model for the subset of pathogenic variants correctly predicted
by the tool using “–output-format html” and “–n-variants-to-report 121”. Afterwards, we
manually inspected the HTML report generated to derive structured interpretations for each
variant: “Not informative” if the short description of the variant effect was not generated; “No
interpretation” if SQUIRLS did not produce any description or figure for the variant; “New
cryptic acceptor” and “New cryptic donor” if SQUIRLS described the creation of a new splice
site and the variant was located at one of the splice site positions (based on the Sequence trekker
figure) defined in this manuscript; “Activate cryptic acceptor” and “Activate cryptic donor” if
SQUIRLS described the creation of a cryptic splice site and the variant was located outside
of the splice site positions (based on the Sequence trekker figure). Because SQUIRLS does not
predict the exact molecular effect of a splicing variant, we ignored the predicted number of bases
affecting the coding sequence as this was not applicable for pseudoexon-activating variants. After
manually inspecting the HTML report and generating structured interpretations, we classified
the interpretation as correct if it matched the ground truth information:

• “New splice acceptor” for variants that create a new splice donor, else incorrect.
• “New splice donor” for variants that create a new splice acceptor, else incorrect.
• “Activate cryptic acceptor” for variants located upstream of an existing cryptic splice

acceptor and not associated with the branchpoint signal, else incorrect.
• “Activate cryptic donor” for variants located downstream of an existing cryptic splice

donor, else incorrect.

Finally, for SpliceVault we did not run a model to get correctly predicted variants to further
inspect. Rather, SpliceVault is a web portal https://kidsneuro.shinyapps.io/splicevault/
(last accessed May 21st, 2023) to query non-canonical splicing patterns in large-scale
population-based RNA-sequencing data. Because it relies on querying rare mis-splicing events
with respect to annotated exons, we excluded all variants that trigger pseudoexon activation, as
SpliceVault can’t identify this class of events. As a result, 37 variants were left for evaluation.
For each variant, we used the associated gene, intron number and molecular effect to select the
correct exon and splice site to look for. We used the hg38 version (300k-RNA) and changed
the default SpliceVault settings so that the Top-10 events per query were shown. Moreover, we
allowed for all cryptic events to be reported, regardless of their distance to the target exon. We
assigned variants to the “No interpretation” tag if the cryptic splicing event was not observed
in SpliceVault Top-10 events. Then, we classified the interpretation as “Correct” if any of the
cryptic splicing triggered by the variant was observed within the Top-4 events. This threshold
was recommended by the authors of SpliceVault for clinical purposes. Conversely, if the event
appeared in lower ranks, we classified the interpretation as “Incorrect”.
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A.6 Tissue-specific predictions by AbSplice-DNA

Throughout the manuscript, we selected the maximum AbSplice-DNA prediction for any tissue
to evaluate model performance. In contrast, for this analysis, we used all predictions so that
tissue specificity could be addressed. We used the same dataset as for the interpretability section.
We ran VETA in the interrogate mode (with --labels Pathogenic set) to list the variants
correctly predicted by AbSplice-DNA using the threshold adjusted for non-canonical intronic
variation (>0.004, in at least one tissue). Then, for each variant, we gathered information
about the tissues associated with the disease by searching the HPO [197] with the given OMIM
disease identifier. We strived to assign tissue names that matched the GTEx tissues used by
AbSplice-DNA. Disease-causing variants affecting tissues not represented in GTEx (e.g. retina)
were discarded. Additionally, variants causing systemic diseases (e.g. Marfan syndrome), or
diseases returning ambiguous HPO terms were excluded.
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Figure A.1: Intronic variant prediction in ClinVar. A - Performance of all tools considered for the study on
the raw ClinVar intronic dataset. Mean values in the legend represent the average weighted F1 score across all
intronic bins. B - Inspection of intronic variants (after addressing circularity problems) assigned to the “501-1000”
and “1000+” intronic bins. The bars reflect the number of variants assigned to each category. The term “No
other transcript” refers to all variants that do not have any other RefSeq protein coding transcript of the same
gene overlapping with them, besides the transcript originally used (N pathogenic=25, N benign=340). “> 1
transcript (same offset)” refers to variants that overlap with more than one transcript of the same gene but do
not have any other transcript where the variant is closer to the splice site than in the original transcript used in
the analysis (N pathogenic=31, N benign=527). “> 1 transcript (smaller offset)” refers to variants that overlap
with more than one transcript of the same gene, and have at least one other transcript in which the variant is
closer to the splice site than in the original transcript used in the analysis (N pathogenic=20, N benign=254).
“Exonic” refers to variants that overlap with more than one transcript of the same gene, and have at least one
other transcript where the variant is exonic (N pathogenic=41, N benign=263). C - Distribution of the updated
intronic distances to the closest splice site for variants assigned to the “> 1 transcript (smaller offset)” category.
D - Tool performance (measured with weighted F1 score) for each individual category. Tools with performance
higher than 0.6 are highlighted.
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Figure A.2: Manually curated dataset of pathogenic intronic variants disrupting RNA splicing. A - Number
of variants collected per phenotype. Diseases with less than 3 variants were assigned to the “Other” category. B -
Number of variants occurring in ClinVar and gnomAD v2.1. C - Log transformed allele frequencies of variants in
gnomAD v2.1. For those that are absent in the database, a pseudocount of 0.00001 was added (highest histogram
peak, at 5). D - Tool performance using reference thresholds from Table 1 for variants curated in this manuscript
plus those curated by Vaz-Drago et al. [59]. MLCsplice and dbscSNV are not shown as they had more than 95%
of missing predictions. E - Distance (Log10) of the variants to the closest splice junction. Pseudoexon activation
group: 194 variants; Partial intron retention group: 37 variants.
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Figure A.3: Precision-Recall curves for all splicing-altering variants analyzed in a region-specific
manner. Tools are ranked by the auPRC metric and the number of predictions made by each tool is
displayed in n=. The number of variants in each dataset is presented (“N pos” and “N neg” represent the
number of positive and negative splicing variants, respectively). Tools with more than 50% of missing
predictions or with less than 15 variants in the minority class were excluded from these analyses. A -
Branchpoint associated variants. B - Acceptor-associated variants triggering pseudoexon inclusion. C
- Acceptor-associated variants leading to partial intron retention. D - Exonic-like variants triggering
pseudoexon inclusion. E - Exonic-like variants leading to partial intron retention. F - Variants creating
new splice donors and activate pseudoexons. G - Variants creating new splice donors and leading to
partial intron retention. H - Variants activating existing upstream cryptic splice donors and triggering
pseudoexon activation. I - Variants activating existing upstream cryptic splice donors and leading to
partial intron retention.
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Figure A.4: Performance comparison between all pseudoexon activation versus partial intron retention
variants. A - Distribution of the auPRC scores of the tools for each variant region. B - Per-tool auPRC
distribution across the four variant regions considered. A Fisher’s exact test was conducted separately for each
tool and variant region to determine statistical significance for the performance differences between the pseudoexon
activation and partial intron retention groups. The true positives plus true negatives were considered successful
outcomes, while false positives plus false negatives were considered failures. The p-values displayed in the figure
were corrected for multiple comparisons using the Holm method. For each tool, we excluded the variant regions
that did not have performance measurements in both groups.
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Figure A.5: Tissue-specific predictions made by AbSplice-DNA for a set of disease-causing variants
associated with aberrant splicing. A - Disease variants associated with multiple GTEx tissues that
displayed variable scores across tissues. B - Disease variants with no tissue-specificity. All tissues got
the same AbSplice-DNA score. Disease variants associated with one or more GTEx tissues are displayed
in a single heatmap annotation.
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Table A.1: Adjusted thresholds that maximize performance for non-canonical intronic splicing variants at
different levels of importance given to precision and recall based on the Fβ score, as described in Section 4.3.1.

Tool Original threshold Adjusted: β=0.5 Adjusted: β=1* Adjusted: β=1.5
CADD-Splice 15 8.054 2.765 1.846
SQUIRLS 0.074 0.016 0.016 0.006
SpliceAI 0.2 0.1 0.05 0.04
TraP 0.289 0.211 0.062 0.0

ConSpliceML 0.5 0.19 0.07 0.03
CI-SpliceAI 0.19 0.08 0.02 0.02
Pangolin 0.2 0.158 0.053 0.053
SPiP 0.452 0.009 0.009 0.009

PDIVAS 0.151 0.03 0.01 0.01
AbSplice-DNA 0.01 0.004 0.004 0.0

* Thresholds selected for downstream analysis that used a binary decision threshold.
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Figure B.1: Distribution of GC content values for upstream introns in each paired dataset. The N= at each
facet (a single RBP paired dataset) indicates the total dataset size, including knockdown-sensitive and control
exons.

166



20 40 60 80
0.00
0.01
0.02
0.03
0.04

20 40 60 80
0.00
0.02
0.04

20 40 60 80
0.00
0.02
0.04

20 30 40 50 60 70
0.00
0.02
0.04
0.06

20 40 60 80
0.00
0.01
0.02
0.03

20 40 60 80
0.00
0.01
0.02
0.03
0.04

30 40 50 60 70
0.000.010.020.030.040.05

20 40 60 80
0.000.010.020.030.040.05

30 40 50 60 70
0.000.010.020.030.040.05

20 40 60
0.00
0.02
0.04

30 40 50 60 70
0.00
0.01
0.02
0.03
0.04

30 40 50 60 70
0.000.010.020.030.040.05

40 60 80
0.00
0.01
0.02
0.03

30 40 50 60 70
0.00
0.01
0.02
0.03
0.04

40 60 80
0.00
0.02
0.04
0.06

30 40 50 60 70
0.00
0.01
0.02
0.03
0.04

20 30 40 50 60 70
0.000.010.020.030.040.05

30 40 50 60 70
0.000.010.020.030.040.05

30 40 50 60 70
0.00
0.01
0.02
0.03
0.04

20 30 40 50 60 70
0.00
0.02
0.04

30 40 50 60 70
0.00
0.01
0.02
0.03
0.04

30 40 50 60 70
0.00
0.02
0.04
0.06

30 40 50 60 70
0.00
0.02
0.04

30 40 50 60 70
0.00
0.01
0.02
0.03
0.04

30 40 50 60 70
0.00
0.01
0.02
0.03
0.04

30 40 50 60 70
0.000.010.020.030.040.05

20 40 60 80
0.00
0.01
0.02
0.03
0.04

30 40 50 60 70
0.00
0.02
0.04
0.06

30 40 50 60
0.00
0.02
0.04
0.06

30 40 50 60
0.00
0.02
0.04
0.06

30 40 50 60 70
0.00
0.01
0.02
0.03
0.04

30 40 50 60 70
0.00
0.02
0.04
0.06

20 30 40 50 60 70
0.00
0.02
0.04

30 40 50 60 70
0.00
0.02
0.04

30 40 50 60 70
0.00
0.02
0.04
0.06

30 40 50 60
0.00
0.02
0.04
0.06

30 40 50 60 70
0.00
0.02
0.04

30 40 50 60 70
0.00
0.02
0.04
0.06

20 40 60 80
0.00
0.02
0.04
0.06

30 40 50 60
0.000.010.020.030.040.05

30 40 50 60 70
0.00
0.02
0.04
0.06

30 40 50 60 70
0.00
0.02
0.04
0.06

30 40 50 60
0.00
0.02
0.04
0.06

30 40 50 60 70
0.00
0.02
0.04
0.06

20 30 40 50 60 70
0.00
0.01
0.02
0.03
0.04

20 30 40 50 60 70
0.00
0.02
0.04
0.06
0.08

30 40 50 60
0.00
0.02
0.04
0.06

30 40 50 60 70
0.00
0.02
0.04
0.06
0.08

20 30 40 50 60 70
0.00
0.02
0.04
0.06

GC_intron_downstream

de
ns

ity

U2AF1 (N=4012) U2AF2 (N=3628) SRSF1 (N=2056) PUF60 (N=1956) FUBP1 (N=1272)

HNRNPK (N=1192) HNRNPC (N=1034) SRSF3 (N=1014) HNRNPU (N=824) MATR3 (N=804)

PCBP1 (N=790) PTBP1 (N=750) RAVER1 (N=626) RBM25 (N=582) SFPQ (N=534)

RBM22 (N=496) SF1 (N=482) NCBP2 (N=482) EWSR1 (N=476) RBM17 (N=460)

TIAL1 (N=414) RBM39 (N=390) QKI (N=384) GPKOW (N=370) SRSF9 (N=358)

HNRNPLL (N=348) SRSF5 (N=312) PRPF8 (N=302) HNRNPL (N=274) HNRNPM (N=266)

HNRNPH1 (N=244) SRSF7 (N=234) RBFOX2 (N=230) TARDBP (N=228) PCBP2 (N=210)

CELF1 (N=184) NONO (N=164) KHSRP (N=120) HNRNPA1 (N=120) RBM15 (N=118)

AKAP8L (N=118) GEMIN5 (N=102) DAZAP1 (N=102) HNRNPF (N=92) TFIP11 (N=90)

SMN1 (N=88) EFTUD2 (N=88) FUS (N=86) KHDRBS1 (N=82)

exon_group
CTRL
KD

Figure B.2: Distribution of GC content values for downstream introns in each paired dataset. The N= at each
facet (a single RBP paired dataset) indicates the total dataset size, including knockdown-sensitive and control
exons.
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Figure B.3: Distribution of length values for cassette exons in each paired dataset. The N= at each facet (a
single RBP paired dataset) indicates the total dataset size, including knockdown-sensitive and control exons.
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Figure B.4: Distribution of length values for upstream introns in each paired dataset. The N= at each facet
(a single RBP paired dataset) indicates the total dataset size, including knockdown-sensitive and control exons.
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Figure B.5: Distribution of length values for downstream introns in each paired dataset. The N= at each facet
(a single RBP paired dataset) indicates the total dataset size, including knockdown-sensitive and control exons.
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Figure B.6: Distribution of SpliceAI predictions for each exon group across 49 paired datasets. Each datapoint
represents a single exon, scored as the mean between the splice acceptor and donor positions. The N= at each
facet indicates the number of knockdown-sensitive exons. The full dataset size is twice that number.
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A B

Figure B.7: Position-dependent enrichment of impactful perturbations in knockdown-sensitive vs
control sequences for all paired datasets. Positive (> 0.05) and negative (< -0.05) SpliceAI changes
were analyzed separately ((+) and (-) strings added to RBP names, respectively). Distance to the
upstream/cassette/downstream exons was discretized into region bins of 50bp and the difference in the counts of
impactful perturbations between sequences of the knockdown-sensitive and control groups was calculated, for each
bin. Heatmap values indicate how much the differences in a particular region deviate from the mean of differences
of all regions, for each RBP (row-wise). A - Sequences with negative dPSI (more exon skipping)measured in the
RNA-Seq data. B - Sequences with positive dPSI (more exon inclusion) measured in the RNA-Seq data.
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Figure B.8: Tabular machine learning classification to predict exon groups. Like in the regression setting,
four different strategies were used to generate sequence-based features. Performance was assessed by computing
the mean accuracy of test sets from a stratified cross-validation procedure with 5 splits. Several models were
used: a Logistic Regression (with max_iter=100), a Decision Tree (with min_samples_leaf=3, max_depth=5), a
Random Forest (n_estimators=10), and two gkm-SVM models, one with a linear kernel (gkmtrain -t2), and
another employing the RDF nonlinear kernel (gkmtrain -t3). Analysis includes also a baseline Dummy classifier
set to always predict the most frequent class (although here the datasets are balanced). The N= at each row label
indicates the dataset size which includes the knockdown-sensitive and control sequences.
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Table B.1: ENCODE knockdown identifiers used in the analysis.

RBP name Cell line KD experiment Ctrl experiment KD bams Ctrl bams
TARDBP HepG2 ENCSR527QNC ENCSR264TUE ENCFF958MMI;ENCFF965UPD ENCFF958MMI;ENCFF965UPD
CELF1 HepG2 ENCSR695XOD ENCSR042QTH ENCFF819ILY;ENCFF309FMB ENCFF819ILY;ENCFF309FMB
QKI HepG2 ENCSR330YOU ENCSR603TCV ENCFF709LHN;ENCFF613CGT ENCFF709LHN;ENCFF613CGT
RBM22 HepG2 ENCSR330KHN ENCSR997HCQ ENCFF293GBJ;ENCFF996GEV ENCFF293GBJ;ENCFF996GEV
SUGP2 HepG2 ENCSR837QDN ENCSR246RRQ ENCFF143QAT;ENCFF348XBK ENCFF143QAT;ENCFF348XBK
TRA2A HepG2 ENCSR030GZQ ENCSR491FOC ENCFF055FJV;ENCFF566QZD ENCFF055FJV;ENCFF566QZD
PRPF6 HepG2 ENCSR529QEZ ENCSR491FOC ENCFF055FJV;ENCFF566QZD ENCFF055FJV;ENCFF566QZD
DDX5 HepG2 ENCSR808FBR ENCSR776SXA ENCFF567LXN;ENCFF427USC ENCFF567LXN;ENCFF427USC
SRSF3 HepG2 ENCSR376FGR ENCSR264TUE ENCFF958MMI;ENCFF965UPD ENCFF958MMI;ENCFF965UPD
SRSF4 HepG2 ENCSR471INA ENCSR853AOV ENCFF299XOT;ENCFF957MEX ENCFF070YEL;ENCFF379EYH
RBM14 HepG2 ENCSR166MWM ENCSR521WAI ENCFF198HLU;ENCFF590DAN ENCFF198HLU;ENCFF590DAN
TIA1 HepG2 ENCSR057GCF ENCSR603TCV ENCFF709LHN;ENCFF613CGT ENCFF709LHN;ENCFF613CGT
NONO HepG2 ENCSR647NYX ENCSR856ZRV ENCFF435FBM;ENCFF343WPT ENCFF435FBM;ENCFF343WPT
BUD13 HepG2 ENCSR382QKD ENCSR067GHD ENCFF032IND;ENCFF304ITC ENCFF032IND;ENCFF304ITC
FUS HepG2 ENCSR927JXU ENCSR491FOC ENCFF055FJV;ENCFF566QZD ENCFF055FJV;ENCFF566QZD
PTBP1 HepG2 ENCSR064DXG ENCSR603TCV ENCFF709LHN;ENCFF613CGT ENCFF709LHN;ENCFF613CGT
RBM47 HepG2 ENCSR711ZJQ ENCSR279HMU ENCFF931LCX;ENCFF931YGM ENCFF931LCX;ENCFF931YGM
TIAL1 HepG2 ENCSR450VQO ENCSR305XWT ENCFF894JVP;ENCFF857QEU ENCFF894JVP;ENCFF857QEU
DDX20 HepG2 ENCSR429OUR ENCSR775ZWO ENCFF149SLG;ENCFF221LJC ENCFF149SLG;ENCFF221LJC
STAU1 HepG2 ENCSR124KCF ENCSR067GHD ENCFF032IND;ENCFF304ITC ENCFF032IND;ENCFF304ITC
U2AF2 HepG2 ENCSR426UUG ENCSR104ABF ENCFF905ARG;ENCFF482MPL ENCFF905ARG;ENCFF482MPL
PCBP1 HepG2 ENCSR635FRH ENCSR603TCV ENCFF709LHN;ENCFF613CGT ENCFF709LHN;ENCFF613CGT
AKAP8L HepG2 ENCSR807ODB ENCSR538QOG ENCFF567UAR;ENCFF958YDS ENCFF567UAR;ENCFF958YDS
RBFOX2 HepG2 ENCSR767LLP ENCSR104ABF ENCFF482MPL;ENCFF905ARG ENCFF482MPL;ENCFF905ARG
TFIP11 HepG2 ENCSR573UBF ENCSR856ZRV ENCFF343WPT;ENCFF435FBM ENCFF343WPT;ENCFF435FBM
HNRNPL HepG2 ENCSR155BMF ENCSR042QTH ENCFF819ILY;ENCFF309FMB ENCFF819ILY;ENCFF309FMB
HNRNPA2B1 HepG2 ENCSR769GES ENCSR042QTH ENCFF819ILY;ENCFF309FMB ENCFF819ILY;ENCFF309FMB
SRSF1 HepG2 ENCSR094KBY ENCSR603TCV ENCFF709LHN;ENCFF613CGT ENCFF709LHN;ENCFF613CGT
SRSF5 HepG2 ENCSR781YNI ENCSR042QTH ENCFF819ILY;ENCFF309FMB ENCFF819ILY;ENCFF309FMB
FMR1 HepG2 ENCSR905HID ENCSR042QTH ENCFF819ILY;ENCFF309FMB ENCFF819ILY;ENCFF309FMB
SF1 HepG2 ENCSR644AIM ENCSR104ABF ENCFF905ARG;ENCFF482MPL ENCFF905ARG;ENCFF482MPL
U2AF1 HepG2 ENCSR372UWV ENCSR067GHD ENCFF032IND;ENCFF304ITC ENCFF032IND;ENCFF304ITC
CCAR2 HepG2 ENCSR237IWZ ENCSR674KEK ENCFF675TNO;ENCFF432OLY ENCFF675TNO;ENCFF432OLY
EWSR1 HepG2 ENCSR532ZPP ENCSR538QOG ENCFF567UAR;ENCFF958YDS ENCFF567UAR;ENCFF958YDS
RBM25 HepG2 ENCSR610AEI ENCSR603TCV ENCFF709LHN;ENCFF613CGT ENCFF709LHN;ENCFF613CGT
HNRNPH1 HepG2 ENCSR094HEU ENCSR194SPW ENCFF555MSU;ENCFF887DEY ENCFF555MSU;ENCFF887DEY
SND1 HepG2 ENCSR398LZW ENCSR491FOC ENCFF055FJV;ENCFF566QZD ENCFF055FJV;ENCFF566QZD
NCBP2 HepG2 ENCSR030ARO ENCSR237YZT ENCFF745CDS;ENCFF335ETY ENCFF745CDS;ENCFF335ETY
RBM15 HepG2 ENCSR599PXD ENCSR585KOJ ENCFF178VBQ;ENCFF761MBM ENCFF178VBQ;ENCFF761MBM
PPIG HepG2 ENCSR620HAA ENCSR246RRQ ENCFF143QAT;ENCFF348XBK ENCFF143QAT;ENCFF348XBK
ZRANB2 HepG2 ENCSR081QQH ENCSR491FOC ENCFF055FJV;ENCFF566QZD ENCFF055FJV;ENCFF566QZD
RBM39 HepG2 ENCSR760EGM ENCSR104ABF ENCFF905ARG;ENCFF482MPL ENCFF905ARG;ENCFF482MPL
SRSF9 HepG2 ENCSR597XHH ENCSR603TCV ENCFF709LHN;ENCFF613CGT ENCFF709LHN;ENCFF613CGT
ADAR HepG2 ENCSR104OLN ENCSR305XWT ENCFF894JVP;ENCFF857QEU ENCFF894JVP;ENCFF857QEU
HNRNPM HepG2 ENCSR995JMS ENCSR067GHD ENCFF032IND;ENCFF304ITC ENCFF032IND;ENCFF304ITC
EFTUD2 HepG2 ENCSR620OKS ENCSR689PHN ENCFF710REB;ENCFF817MUD ENCFF710REB;ENCFF817MUD
MATR3 HepG2 ENCSR492UFS ENCSR237YZT ENCFF745CDS;ENCFF335ETY ENCFF745CDS;ENCFF335ETY
SMN1 HepG2 ENCSR090UMI ENCSR305XWT ENCFF894JVP;ENCFF857QEU ENCFF894JVP;ENCFF857QEU
PRPF8 HepG2 ENCSR998MZP ENCSR856ZRV ENCFF435FBM;ENCFF343WPT ENCFF435FBM;ENCFF343WPT
HNRNPK HepG2 ENCSR853ZJS ENCSR237YZT ENCFF335ETY;ENCFF745CDS ENCFF335ETY;ENCFF745CDS
RBM5 HepG2 ENCSR606PVX ENCSR481WJH ENCFF230CCM;ENCFF776AHW ENCFF230CCM;ENCFF776AHW
CDC40 HepG2 ENCSR278NFF ENCSR481WJH ENCFF230CCM;ENCFF776AHW ENCFF230CCM;ENCFF776AHW
HNRNPF HepG2 ENCSR693MZJ ENCSR305XWT ENCFF894JVP;ENCFF857QEU ENCFF894JVP;ENCFF857QEU
HNRNPLL HepG2 ENCSR490DYI ENCSR264TUE ENCFF958MMI;ENCFF965UPD ENCFF958MMI;ENCFF965UPD
SRSF7 HepG2 ENCSR017PRS ENCSR603TCV ENCFF709LHN;ENCFF613CGT ENCFF709LHN;ENCFF613CGT
HNRNPD HepG2 ENCSR660MZN ENCSR279HMU ENCFF931LCX;ENCFF931YGM ENCFF931LCX;ENCFF931YGM
HNRNPU HepG2 ENCSR308IKH ENCSR305XWT ENCFF894JVP;ENCFF857QEU ENCFF894JVP;ENCFF857QEU
HNRNPC HepG2 ENCSR052IYH ENCSR305XWT ENCFF894JVP;ENCFF857QEU ENCFF894JVP;ENCFF857QEU
HNRNPA1 HepG2 ENCSR182DAW ENCSR305XWT ENCFF894JVP;ENCFF857QEU ENCFF894JVP;ENCFF857QEU
SFPQ HepG2 ENCSR782MXN ENCSR104ABF ENCFF482MPL;ENCFF905ARG ENCFF482MPL;ENCFF905ARG
PPP1R8 HepG2 ENCSR592AQT ENCSR827PII ENCFF318QBO;ENCFF968KVV ENCFF318QBO;ENCFF968KVV
PSIP1 HepG2 ENCSR744YVR ENCSR674KEK ENCFF675TNO;ENCFF432OLY ENCFF675TNO;ENCFF432OLY
RAVER1 HepG2 ENCSR576GOW ENCSR491FOC ENCFF055FJV;ENCFF566QZD ENCFF055FJV;ENCFF566QZD
GEMIN5 HepG2 ENCSR771QMJ ENCSR689PHN ENCFF710REB;ENCFF817MUD ENCFF710REB;ENCFF817MUD
KHSRP HepG2 ENCSR850CKU ENCSR237YZT ENCFF745CDS;ENCFF335ETY ENCFF745CDS;ENCFF335ETY
PUF60 HepG2 ENCSR648BSC ENCSR042QTH ENCFF819ILY;ENCFF309FMB ENCFF819ILY;ENCFF309FMB
PCBP2 HepG2 ENCSR028ITN ENCSR491FOC ENCFF055FJV;ENCFF566QZD ENCFF055FJV;ENCFF566QZD
DAZAP1 HepG2 ENCSR220TBR ENCSR042QTH ENCFF819ILY;ENCFF309FMB ENCFF819ILY;ENCFF309FMB
FUBP1 HepG2 ENCSR736TAW ENCSR225PRV ENCFF560WIR;ENCFF085MQH ENCFF560WIR;ENCFF085MQH
KHDRBS1 HepG2 ENCSR784FTX ENCSR279HMU ENCFF931LCX;ENCFF931YGM ENCFF931LCX;ENCFF931YGM
RBM17 HepG2 ENCSR385TMY ENCSR104ABF ENCFF482MPL;ENCFF905ARG ENCFF482MPL;ENCFF905ARG
GPKOW HepG2 ENCSR968YWY ENCSR264TUE ENCFF958MMI;ENCFF965UPD ENCFF958MMI;ENCFF965UPD
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Appendix C

Semantically-rich synthetic dataset
generation with constrained Genetic
Programming

C.1 Adding SQUID as an additional baseline

We included SQUID v0.4.0 [34] as an additional baseline for the generalization experiments.
Importantly, SQUID’s primary goal is not the generation of the dataset per se; instead, it focuses
on using the generated dataset to train surrogate models to interpret genomics deep neural
networks. At the dataset generation step, SQUID applies random perturbations to the input
sequence. However, it differs from our Random Search approach in several aspects. Firstly, the
perturbations are applied directly to the input sequence agnostically to our target specifications
- generating diversity in the model prediction space - and thus are much faster to run. Secondly,
SQUID restricts perturbations to SNVs and does not allow deletions and deletions. Lastly, it
does not allow domain-aware constraints to be applied, such as avoiding perturbations in splice
site regions. It was precisely due to this last point that we included SQUID in the comparison: to
assess whether allowing perturbations at splice site regions (resulting in drastic changes) would
enhance the coverage of the model prediction space.

To make SQUID comparable to our evolutionary-based approaches, we customized a SpliceAI
predictor such that the predictions returned are the average of the model at the splicing
acceptor and donor positions of the cassette exon. Then, for each input sequence we set
up a RandomMutagenesis object with a mut_rate value that yielded an average number of
perturbations per sequence similar to the average edit distance of the datasets obtained for the
best GGGP configuration, which was 11.3. Then, we generated 5000 sequences (equivalent to
the archive capacity of the evolutionary-based approaches) using 5 different seeds. Finally,
we converted the generated sequences into a format suitable for comparison and evaluated
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the quality of the datasets accordingly. Of note, we did not run the motif analyses for the
SQUID-generated datasets because the perturbation space is different from Random Search and
GGGP (splice site regions perturbed), rendering the comparison unfair.

176



Appendix D

Other contributions

Although the research presented in this document represents the contributions of my PhD
studies, I have also participated in other projects. In this section, I outline my specific
contributions to these works:

• I analyzed WGS data to identify a heterozygous splicing-disrupting pathogenic intronic
variant in MYBPC3, which was subsequently confirmed to cosegregate among family
members.

A. Gomes, P. Barbosa, A. Coutinho, I. Cruz, M. Carmo-Fonseca, L. Lopes,
“Whole-genome DNA sequencing: The key to detecting a sarcomeric mutation in
a ‘false genotype-negative’ family with hypertrophic cardiomyopathy”, Portuguese
Journal of Cardiology, 2020 [303].

• In a Portuguese cohort of 268 newly diagnosed Acute Myeloid Leukemia patients, a
targeted gene panel sequencing strategy was employed to investigate the potential clinical
value of molecular screening for risk assessment. I conducted pairwise associations analyzes
among somatic mutations to identity significant co-occurrences across gene pairs.

S. Matos, P. Bernardo, S. Esteves, A. Botelho de Sousa, M. Lemos, P. Ribeiro,
M. Silva, A. Nunes, J. Lobato, M.J. Frade, M.Gomes da Silva, S. Chacim,
J. Mariz, G. Esteves, J. Raposo, A. Espadana, J. Carda, P. Barbosa, V.
Martins, M. Carmo-Fonseca, J. Desterro, “Screening a Targeted Panel of Genes by
Next-Generation Sequencing Improves Risk Stratification in Real World Patients with
Acute Myeloid Leukemia”, Cancers, 2022 [304].

• An improved reference genome of the cork oak, a tree of significant economic importance
in Portugal, has been released. This release includes the first sequences of the chloroplast
and mitochondrion organelles. I contributed to the initial analysis of long-read sequencing
data generated using PacBio technology and its integration with short-read data from
Illumina systems.
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A. Usié, O. Serra, P. Barros, P. Barbosa, C. Leão, T. Capote, T. Almeida, L.
Rodrigues, I. Carrasquinho, J. Guimarães, D. Mendonça, F. Nóbrega, C. Egas, I.
Chaves, I.A. Abreu, N.J.M. Saibo, L. Marum, M.C. Varela, J. Matos, F. Simões,
C.M. Miguel, M.M. Oliveira, C.P. Ricardo, S. Gonçalves, A.M. Ramos, “An improved
reference genome and first organelle genomes of Quercus suber”, Tree Genetics &
Genomes, 2023 [305].

• Comprehensive analysis of the erosion of X-chromosome inactivation in female human
pluripotent stem cells during differentiation. I performed WES analysis across cell lines to
identify SNVs that could be used to assess allele-specific expression in the X chromosome
using RNA-seq data.

A.C. Raposo, P. Caldas, M. Arez, J. Jeremias, P. Barbosa, R. Sousa-Luís, F. Água,
D. Oxley, A. Mupo, M. Eckersley-Maslin, M. Casanova, A.R. Grosso, S. Teixeira da
Rocha, “Erosion of X-Chromosome Inactivation in female hiPSCs is heterogeneous
and persists during differentiation”, bioRxiv, 2024 [306].

• Alternative splicing analysis in Dilated Cardiomyopathy patients with genetic and ischemic
origins. I performed most of the bioinformatics analysis in the manuscript.

M. Furtado∗, P. Barbosa∗, T. Carvalho, B. Silva, P. Napoleão, L. Zhang, P.
Leszek, M. Carmo-Fonseca, Y. Devaux, S. Martins, “Alternative splicing is similarly
dysregulated in heart failure patients with dilated and ischemic cardiomyopathy”, in
submission, 2024.
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